一、文章信息
论文名称:DE-FAKE: Detection and Attribution of Fake Images Generated by Text-to-Image Generation Models
作者团队:
二、主要创新
本文的主要创新是开发了一种机器学习分类器,用于检测和归因文本到图像生成模型生成的虚假图像。
该研究对四种流行的文本到图像生成模型进行了广泛的实验,包括DALL·E 2, Stable Diffusion, GLIDE, and Latent Diffusion,以及两个基准图像数据集MSCOCO和Flickr30k。
实验结果表明,可以将各种模型生成的虚假图像与真实图像区分开来,并且可以有效地将虚假图像归因于其源模型。
三、方法
1、检测,分为纯图像和混合检测。
纯图像检测:检测器仅接受图像输入。
混合检测:接受图像和Prompt作为输入。图像与文本编码器均为CLIP的编码器。