德摩根定律(De Morgan’s Laws)是逻辑学中的两个重要规则,用于将逻辑表达式中的否定运算分配给内部的子表达式。具体规则如下:
规则 1:否定“或”运算
对于任意两个逻辑表达式 ( A ) 和 ( B ),德摩根定律规定:
[
\neg (A \lor B) \equiv (\neg A) \land (\neg B)
]
即:
- “非(A 或 B)”等价于“非 A 且 非 B”。
规则 2:否定“且”运算
同样地,对于任意两个逻辑表达式 ( A ) 和 ( B ),德摩根定律还规定:
[
\neg (A \land B) \equiv (\neg A) \lor (\neg B)
]
即:
- “非(A 且 B)”等价于“非 A 或 非 B”。
示例
-
对于表达式 ( \neg (x > 0 \lor y == 5) ),根据德摩根定律,可以转化为:
[
(\neg (x > 0)) \land (\neg (y == 5)) \equiv (x \leq 0) \land (y \neq 5)
] -
对于表达式 ( \neg (x > 0 \land y == 5) ),可以转化为:
[
(\neg (x > 0)) \lor (\neg (y == 5)) \equiv (x \leq 0) \lor (y \neq 5)
]
这两条规则非常有用,在编写和简化逻辑表达式时,尤其是涉及条件判断的程序中,可以用来更好地理解和转换复杂的逻辑表达式。