德摩根定律

德摩根定律(De Morgan’s Laws)是逻辑学中的两个重要规则,用于将逻辑表达式中的否定运算分配给内部的子表达式。具体规则如下:

规则 1:否定“或”运算

对于任意两个逻辑表达式 ( A ) 和 ( B ),德摩根定律规定:
[
\neg (A \lor B) \equiv (\neg A) \land (\neg B)
]
即:

  • “非(A 或 B)”等价于“非 A 且 非 B”。

规则 2:否定“且”运算

同样地,对于任意两个逻辑表达式 ( A ) 和 ( B ),德摩根定律还规定:
[
\neg (A \land B) \equiv (\neg A) \lor (\neg B)
]
即:

  • “非(A 且 B)”等价于“非 A 或 非 B”。

示例

  1. 对于表达式 ( \neg (x > 0 \lor y == 5) ),根据德摩根定律,可以转化为:
    [
    (\neg (x > 0)) \land (\neg (y == 5)) \equiv (x \leq 0) \land (y \neq 5)
    ]

  2. 对于表达式 ( \neg (x > 0 \land y == 5) ),可以转化为:
    [
    (\neg (x > 0)) \lor (\neg (y == 5)) \equiv (x \leq 0) \lor (y \neq 5)
    ]

这两条规则非常有用,在编写和简化逻辑表达式时,尤其是涉及条件判断的程序中,可以用来更好地理解和转换复杂的逻辑表达式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七贤岭↻双花红棍↺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值