修改模型后载入预训练权重

我们知道预训练权重是一个字典,里面是网络encoder每一层的权重,拿Resnet34来说,第一层是7x7的卷积权重,最后一层是fc层,之前看到一篇文章Bag of tricks for image classification中提到,将input stem可以替换为其他几种格式可以提高performance,相当于一个trick。

 对于(b),我们将7x7卷积替换为3个3x3卷积,但是我们替换完之后,新的模型就和原始的权重不匹配,就会报错“missing key:”“unexpected key:”之类的。当时我想着载入部分权重,将权重中7x7的key和value删除掉,但是仍然会报错,即:没有3个3x3模型的key。

经过导师的指导,只要把load_state_dict参数里面的strict参数设置为False即可。

在nn.Module中strict函数默认为True,即模型与预训练模型参数的key是完全对应才可以导入,当你修改模型仍要使用预训练权重时候就要设置为False,只有key匹配的层才载入,不匹配的层就会默认初始化。

 因此我们在找到model载入的地方进行修改:在resnet代码中,以及在模型总的代码中修改。

model.load_state_dict(weights, strict=False)

之后可以正常运行:

 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值