英伟达GPU中的Tnesor Cores数量多寡与显卡性能有什么关联?

前言

最近在调研常用显卡的参数,看到Nvidia Tensor Cores常用于其中作为对比,呈现在性能好的显卡比如A100比RTX 3060更多更全面,开始思考Tensor Cores细致的作用是什么?

英伟达GPU显卡的简要发展历程

GTX是英伟达过去显卡的型号,现在推出的以及高性能电脑使用的都是RTX系列的产品。其中RTX提供的一个新功能就是包含了Tensor Cores。

Tensor Cores作用

使用Tensor核(张量核)的两个CUDA库是cuBLAS和cuDNN。

  • cuBLAS使用张量核加速GEMM计算(GEMM是矩阵-矩阵乘法的BLAS术语);
  • cuDNN使用张量核加速卷积和递归神经网络(RNNs)。

许多计算应用程序使用GEMM:信号处理、流体动力学等等。随着这些应用程序的数据大小呈指数级增长,这些应用程序需要在处理速度上进行匹配。图3中的混合精度GEMM性能图显示,张量核显然满足了这一需求。

提高卷积速度的需求同样巨大; 例如,深神经网络(DNNs)使用了许多层卷积。人工智能研究人员每年都在设计越来越深的神经网络;最深的神经网络中的卷积层现在有几十个。训练DNNs需要卷积层在正向和反向传播期间重复运行。

官网图片很明了地展示了张量核的作用:缩短推理时间、提升推理速度、推动高性能计算
在这里插入图片描述

参考资料

  • https://blog.csdn.net/quicmous/article/details/106617875
  • https://www.nvidia.com/zh-tw/data-center/tensor-cores/
在Docker 1.8版本及之前,由于容器技术尚未原生支持GPU资源分配,如果你想让一个容器利用NVIDIA GPU,你需要额外做一些工作。首先,你需要创建一个包含NVIDIA驱动和CUDA工具包的镜像。然后,在运行容器时,你可以通过挂载设备文件、环境变量等方式间接使用GPU。 以下是基本步骤: 1. **创建基于NVIDIA镜像的基础镜像**: - 下载并安装NVIDIA Docker的守护进程`nvidia-docker`,可以从NVIDIA官方GitHub仓库获取。 - 安装NVIDIA驱动和CUDA工具包,比如在Ubuntu上: ``` RUN apt-get update && apt-get install -y nvidia-cuda-toolkit ``` 2. **配置NVIDIA环境**: - 添加环境变量到你的Dockerfile或docker run命令中: ``` # Dockerfile示例 ENV NVIDIA_VISIBLE_DEVICES all ``` 这行命令告诉NVIDIA显卡应该可见。 3. **启动容器时指定GPU**: - 使用`nvidia-docker run`代替标准的`docker run`命令: ```bash nvidia-docker run --gpus all --rm <your-image-name> your-command ``` 或者在Dockerfile中: ```Dockerfile FROM your-image-name CMD ["your-command"] RUN echo "nvidia.dri.mode=1" > /etc/X11/xorg.conf.d/90-nvidia.conf ``` 注意这里`--gpus all`表示所有可用的GPU都会被映射给容器。 4. **确认GPU使用**: - 运行容器后,可以查看容器内的GPU使用情况,例如在Python中使用`nvidia-smi`命令。 重要提示:这个过程需要NVIDIA Docker守护进程的支持,并且不是所有的Docker镜像都直接兼容NVIDIA GPU,所以在开始前,确保你的基础镜像已经进行了相应的适配。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zoetu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值