TensorCore使用

目前有两个库使用了TensorCore技术:cuBLAS与cuDNN。

cuBLAS主要加速了GEMM计算,cuDNN里主要用来加速卷积和RNN

而如何cuBLAS与cuDNN无法满足需求,也可以直接调用Tensor Cores进行编程。

Tensor Cores的调用API在nvcuda::wmma命名空间里。通过调用API进行数值初始化,进行矩阵乘加(MMA)操作然后再把数值存回内存。cuda官方给出了一个直接调用的例子,如果想要针对tensorcore进行高性能的优化,可以参考CUDA Toolkit 的cudaTensorCoreGemm。

TensorCore的使用方法:

头文件和命名空间

#include <mma.h>
using namespace nvcuda;

声明和初始化

tile矩阵乘法

// The only dimensions currently supported by WMMA
const int WMMA_M = 16;
const int WMMA_N = 16;
const int WMMA_K = 16;

__global__ void wmma_example(half *a, half *b, float *c, 
                             int M, int N, int K, 
                             float alpha, float beta) 
{

    // Leading dimensions. Packed with no transpositions.
    int lda = M;
    int ldb = K;
    int ldc = M;
    
    // Tile using a 2D grid
    int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
    int warpN = (blockIdx.y * blockDim.y + threadIdx.y);

 

 

 

 

【1】使用TensorCore编程:https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

【2】TensorCore wiki :https://github.com/maddyscientist/mixed-precision/wiki

### NVIDIA Tensor Core 硬件特性 NVIDIA Tensor Core 是一种专为加速深度学习和人工智能应用而设计的处理器架构组件。这些核心特别擅长执行矩阵运算,这是许多机器学习算法的核心操作之一[^1]。 #### 主要硬件特点: - **高吞吐量**:每个 Tensor Core 可以每周期完成多达 64 次浮点数乘加运算。 - **混合精度支持**:能够在 FP16 (半精度) 和 INT8 数据类型上提供高效的计算能力,并且可以将结果累积到更高的精度(FP32 或 TF32),这有助于提高模型训练的速度而不牺牲准确性[^2]。 - **紧密集成于 GPU 架构内**:与传统的 CUDA Cores 不同的是,Tensor Cores 更像是辅助性的协处理器单元,在 Volta, Turing, Ampere 等架构中被引入并不断改进优化[^3]。 ### Tensor Core 的工作原理 当涉及到具体的工作机制时,Tensor Core 使用了一种称为“GEMM”的通用矩阵乘法作为基本构建模块来实现高效的数据处理流程。对于卷积神经网络(CNN),尤其是其中涉及的大规模线性代数变换部分,这种结构非常适合快速地完成前向传播、反向传播过程中的大量张量运算任务。 ```cpp // C++/CUDA 示例代码展示如何调用 cuBLAS 库来进行 GEMM 运算 #include <cublas_v2.h> void gemm_example(float *A, float *B, float *C, int m, int n, int k){ cublasHandle_t handle; cublasCreate(&handle); const float alpha = 1.f; const float beta = 0.f; // 调用 cuBLAS SGEMM 函数进行矩阵相乘 A*B=C cublasSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, m,n,k,&alpha,A,m,B,k,&beta,C,m); cublasDestroy(handle); } ``` 此段代码展示了通过 NVIDIA 提供的 cuBLAS API 来利用 Tensor Core 加速矩阵乘法的过程。这里 `cuBLAS` 是一个高度优化过的库函数集合,它允许开发者轻松访问底层硬件资源,进而获得更好的性能提升效果。 ### Tensor Core 的应用场景 由于 Tensor Core 对特定类型的数学运算有着极高的效率增益,因此广泛应用于以下几个领域: - **深度学习框架下的模型训练**:无论是图像识别还是自然语言处理等领域内的大规模数据集上的复杂模型都可以受益于此技术所带来的速度优势; - **推理阶段的任务加速**:除了训练之外,在部署后的预测环节同样能发挥重要作用,尤其是在边缘设备或云端服务器环境中追求低延迟响应的情况下更为明显; - **科学计算及其他高性能计算(HPC)**:任何依赖密集型数值模拟的应用程序也可能会采用类似的方案以求得更佳的结果产出速率;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值