【气候模式降尺度】分位数增量映射(QDM)原理及MATLAB代码实现

本文介绍了气候模式降尺度中的分位数增量映射(QDM)偏差订正方法,该方法能保留降水分位数的相对变化。通过MATLAB代码实现QDM,包括主函数及M2R_QDM和QDM两个辅助函数的调用,以校正模式模拟降水的偏差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

分位数增量映射(quantile delta mapping, QDM)


气候模式的模拟结果与观测数据往往存在着一定的系统偏差,若将气候模式结果直接应用于作物模型或者水文模型中,其偏差会对模拟产生很大的影响,因此需要对气候模拟结果进行误差订正。
常用的误差订正方法是分位数映射方法(QuantileMapping, QM)。在建模时段内,计算观测的累计概率分布函数(Cumulative Distribution Function,CDF),并通过构建的传递函数(Transfer Function, TF)使模式数据的CDF 与观测尽量接近。
虽然QM 方法能够有效地减少模式的偏差,不仅对平均值、年际变化还对极端事件的偏差情况有所改善,但QM 可能会人为地改变气候变化信号,如改变模式预估的未来气候趋势。
目前有越来越多的研究去开发保留趋势的误差订正方法,如delta 分位数映射方法(Quantile Delta Mapping, QDM)。本博客主要介绍delta 分位数映射方法(QDM)。

1 QDM偏差订正原理

论文-J2016-Bias Correction of GCM Precipitation by Quantile Mapping How Well Do Methods preserve changes in quantiles and extreme

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值