分位数增量映射(quantile delta mapping, QDM)
气候模式的模拟结果与观测数据往往存在着一定的系统偏差,若将气候模式结果直接应用于作物模型或者水文模型中,其偏差会对模拟产生很大的影响,因此需要对气候模拟结果进行误差订正。
常用的误差订正方法是分位数映射方法(QuantileMapping, QM)。在建模时段内,计算观测的累计概率分布函数(Cumulative Distribution Function,CDF),并通过构建的传递函数(Transfer Function, TF)使模式数据的CDF 与观测尽量接近。
虽然QM 方法能够有效地减少模式的偏差,不仅对平均值、年际变化还对极端事件的偏差情况有所改善,但QM 可能会人为地改变气候变化信号,如改变模式预估的未来气候趋势。
目前有越来越多的研究去开发保留趋势的误差订正方法,如delta 分位数映射方法(Quantile Delta Mapping, QDM)。本博客主要介绍delta 分位数映射方法(QDM)。
1 QDM偏差订正原理
论文-J2016-Bias Correction of GCM Precipitation by Quantile Mapping How Well Do Methods preserve changes in quantiles and extreme