【气候模式降尺度】MBCn多变量偏差校正原理及MATLAB代码实现
MBCn(Multivariate Bias Correction with N-pairs)是一种用于多变量气候模型输出的
多变量偏差校正方法,旨在同时校正多个气候变量的边际分布和变量之间的相依关系。该方法是为了应对传统偏差校正方法仅针对单变量进行校正,忽略多个变量之间相互关系的问题而提出的。
MBCn偏差校正方法的核心思想
MBCn方法的关键是基于逐步迭代的多变量分位数映射,不仅校正单个气候变量的分布偏差,还校正多个变量之间的协方差结构和相关性。MBCn专注于保证校正后的气候变量在边际分布和变量相关结构上都与观测数据一致。
该方法通过以下步骤实现:
1、单变量分位数映射:
首先,MBCn会对每个气候变量单独进行分位数映射校正,确保每个变量的边际分布与观测数据一致。这一步类似于传统的单变量分位数映射(Univariate Quantile Mapping, UQM)。
2、多变量依赖结构校正:
在校正每个变量的边际分布后,MBCn进一步校正气候模型输出中不同变量之间的协方差结构,确保多个变量的相关性与观测数据相匹配。
通过迭代地调整变量间的相依关系,MBCn方法逐步逼近观测数据的多变量依赖结构(如温度与降水之间的相关性)。