[Q(√2,√3,√5) : Q]的一种计算方法

该博客详细介绍了如何计算域扩张Q(2,3,5)相对于有理数Q的维数,并通过分解扩域塔Q(2,3,5)/Q(2,3)/Q(2)/Q来求解。通过分析Q(2)/Q,Q(2,3)/Q(2)和Q(2,3,5)/Q(2,3)的过程,确定了基的构造方式,最终得出[Q(2,3,5):Q]=8,并给出了一组基G={1, 2, 3, 5, 23, 25, 35, 235}。" 81053699,5638881,QTP到UFT的迁移:执行Web功能测试,"['自动化测试', 'QTP', 'UFT', '功能测试', 'Web测试']
摘要由CSDN通过智能技术生成

索引

问题

  计算 [ Q ( 2 , 3 , 5 ) : Q ] \left[ \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3},\sqrt[{}]{5} \right):\mathbb{Q} \right] [Q(2 ,3 ,5 ):Q]以及找出 Q ( 2 , 3 , 5 ) \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3},\sqrt[{}]{5} \right) Q(2 ,3 ,5 ) Q \mathbb{Q} Q上的一组基。

思路

  将域扩张 Q ( 2 , 3 , 5 ) / Q \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3},\sqrt[{}]{5} \right)/\mathbb{Q} Q(2 ,3 ,5 )/Q分解成一个扩域塔如下:
Q ( 2 , 3 , 5 ) / Q ( 2 , 3 ) / Q ( 2 ) / Q \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3},\sqrt[{}]{5} \right)/\mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3} \right)/\mathbb{Q}\left( \sqrt[{}]{2} \right)/\mathbb{Q} Q(2 ,3 ,5 )/Q(2 ,3 )/Q(2 )/Q
则有
[ Q ( 2 , 3 , 5 ) : Q ] = [ Q ( 2 , 3 , 5 ) : Q ( 2 , 3 ) ] × [ Q ( 2 , 3 ) : Q ( 2 ) ] × [ Q ( 2 ) : Q ] \begin{aligned} & \left[ \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3},\sqrt[{}]{5} \right):\mathbb{Q} \right]=\left[ \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3},\sqrt[{}]{5} \right):\mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3} \right) \right]\times \left[ \mathbb{Q}\left( \sqrt[{}]{2},\sqrt[{}]{3} \right):\mathbb{Q}\left( \sqrt[{}]{2} \right) \right] \times \left[ \mathbb{Q}\left( \sqrt[{}]{2} \right):\mathbb{Q} \right] \\ \end{aligned} [Q(2 ,3 ,5 ):Q]=[Q(2 ,3 ,5 ):Q(2 ,3 )]×[Q(2 ,3 ):Q(2 )]×[Q(2 ):Q]

  1. 考察 Q ( 2 ) / Q \mathbb{Q}\left( \sqrt[{}]{2} \right)/\mathbb{Q} Q(2 )/Q。由于 ( 2 ) 2 = 2 ∈ Q { {\left( \sqrt[{}]{2} \right)}^{2}}=2\in \mathbb{Q} (2 )2=2Q,所以 ∀ q ∈ Q [ 2 ] \forall q\in \mathbb{Q}\left[ \sqrt[{}]{2} \right] qQ[2 ] ∃ a 1 , a 2 ∈ Q \exists { {a}_{1}},{ {a}_{2}}\in \mathbb{Q} a1,a2Q,使得
    q = a 1 + a 2 2 q={ {a}_{1}}+{ {a}_{2}}\sqrt[{}]{2} q=a1+a22
    ∀ p ∈ Q ( 2 ) = F r a c ( Q [ 2 ] ) ,   ∃ q 1 , q 2 = a 1 + a 2 2 , b 1 + b 2 2 ∈ Q [ 2 ] , a 1 , 2 , b 1 , 2 ∈ Q \forall p\in \mathbb{Q}\left( \sqrt[{}]{2} \right)=Frac\left( \mathbb{Q}\left[ \sqrt[{}]{2} \right] \right),\text{ }\exists { {q}_{1}},{ {q}_{2}}={ {a}_{1}}+{ {a}_{2}}\sqrt[{}]{2},{ {b}_{1}}+{ {b}_{2}}\sqrt[{}]{2}\in \mathbb{Q}\left[ \sqrt[{}]{2} \right],{ {a}_{1,2}},{ {b}_{1,2}}\in \mathbb{Q} pQ(2 )=Frac(Q[2 ]), q1,q2=a1+a22 ,b1+b22 Q[2 ],a1,2,b1,2Q, q 2 ≠ 0 { {q}_{2}}\ne 0 q2=0,使得
    p = q 1 q 2 = a 1 + a 2 2 b 1 + b 2 2 p=\frac{ { {q}_{1}}}{ { {q}_{2}}}=\frac{ { {a}_{1}}+{ {a}_{2}}\sqrt[{}]{2}}{ { {b}_{1}}+{ {b}_{2}}\sqrt[{}]{2}} p=q2q1=b1+b22 a1+a22
    { q 2 ≠ 0 ⇒ q 2 ‾ ≠ 0 ⇒ q 2 , q 2 ‾ ∈ Q ( 2 ) \ { 0 }   ( q 2 = q 2 1 ,   q 2 ‾ = q 2 ‾ 1 ) quotient field  Q ( 2 ) is a field ⇒ ( Q ( 2 ) \ { 0 } , × ) \left\{ \begin{aligned} & { {q}_{2}}\ne 0\Rightarrow \overline{ { {q}_{2}}}\ne 0\Rightarrow { {q}_{2}},\overline{ { {q}_{2}}}\in \mathbb{Q}\left( \sqrt[{}]{2} \right)\backslash \left\{ 0 \right\}\text{ }\left( { {q}_{2}}=\frac{ { {q}_{2}}}{1},\text{ }\overline{ { {q}_{2}}}=\frac{\overline{ { {q}_{2}}}}{1} \right) \\ & \text{quotient field }\mathbb{Q}\left( \sqrt[{}]{2} \right)\text{is a field}\Rightarrow \left( \mathbb{Q}\left( \sqrt[{}]{2} \right)\backslash \left\{ 0 \right\},\times \right) \\ \end{aligned} \right. q2=0q2=0q2,q2Q(2 )\{ 0} (q2=1q2, q2=1q2)quotient field Q(2 )is a field(Q(2 )\{ 0},×)
    ⇒ q 2 q 2 ‾ ∈ Q ( 2 ) \ { 0 } \Rightarrow { {q}_{2}}\overline{ { {q}_{2}}}\in \mathbb{Q}\left( \sqrt[{}]{2} \right)\backslash \left\{ 0 \right\} q2q2Q(2 )\{ 0},有 q 2 q 2 ‾ = b 1 2 − 2 b 2 2 ∈ Q { {q}_{2}}\overline{ { {q}_{2}}}={ {b}_{1}}^{2}-2{ {b}_{2}}^{2}\in \mathbb{Q} q2q2=b122b22Q q 2 q 2 ‾ ≠ 0 { {q}_{2}}\overline{ { {q}_{2}}}\ne 0 q2q2=0
    在此基础上,有
    p = q 1 q 2 = q 1 q 2 ‾ q 2 q 2 ‾ = a 1 b 1 − 2 a 2 b 2 q 2 q 2 ‾ + a 2 b 1 − a 1 b 2 q 2 q 2 ‾ 2 = A + B 2 p=\frac{ { {q}_{1}}}{ { {q}_{2}}}=\frac{ { {q}_{1}}\overline{ { {q}_{2}}}}{ { {q}_{2}}\overline{ { {q}_{2}}}}=\frac{ { {a}_{1}}{ {b}_{1}}-2{ {a}_{2}}{ {b}_{2}}}{ { {q}_{2}}\overline{ { {q}_{2}}}}+\frac{ { {a}_{2}}{ {b}_{1}}-{ {a}_{1}}{ {b}_{2}}}{ { {q}_{2}}\overline{ { {q}_{2}}}}\sqrt[{}]{2}=A+B\sqrt[{}]{2} p=q2q1=q2q2q1q2=q2q2a1b12a2

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值