离散赋值环概念 Local Fields by Jean-Pierre Serre, Page 5

原文

  A ring A A A is called a discrete valuation ring(离散赋值环) if it is a principal ideal domain 1 ^1 1 (Bourbaki, Alg., Chap. VII) that has a unique non-zero prime ideal 2 ^2 2 m ( A ) \mathfrak{m}\left( A \right) m(A). [Recall that an ideal p \mathfrak{p} p of a commutative ring A A A is called prime if the quotient ring A / p    {A}/{\mathfrak{p}}\; A/p is an integral domain. 3 ^3 3]

  The field A / m ( A )    {A}/{\mathfrak{m}\left( A \right)}\; A/m(A) is called the residue field of A A A. The invertible elements of A A A are those elements that do not belong to m ( A ) \mathfrak{m}\left( A \right) m(A) 4 ^4 4; they form a multiplicative group and are often called the units of A A A (or the field of fractions of A A A).

   In a principal ideal domain, the non-zero prime ideals are the ideals of the form π A \pi A πA, where π \pi π is an irreducible element 5 ^5 5. The definition above comes down to saying that A A A has one and only one irreducible element, up to multiplication by an invertible element 6 ^6 6; such an element is called a uniformizing element of A A A 7 ^7 7 (or uniformizer; Weil [123] calls it a “prime element”).

  The non-zero ideals of A A A are of the form m ( A ) = π n A \mathfrak{m}\left( A \right)={ {\pi }^{n}}A m(A)=πnA 10 ^{10} 10, where π \pi π is a uniformizing element. If x ≠ 0 x\ne 0 x=0 is any element of A A A, one can write x = π n u x={ {\pi }^{n}}u x=πnu, with n ∈ N n\in \mathbb{N} nN and u u u invertible 8 ^8 8; the integer n n n is called the valuation (or the order) of x x x and is denoted ν ( x ) \nu \left( x \right) ν(x); it does not depend on the choice of π \pi π. 9 ^9 9

注释与说明

1. principal ideal domain

principal ideal – 主理想
domain – 整环

主理想定义
   ( R , + , × ) \left( R,+,\times \right) (R,+,×)是一个环,设 a ∈ R a\in R aR,考察 R R R中含有元素 a a a的全部理想的集合
Σ = { I ⊆ R  is the ideal ∣ a ∈ I } , \Sigma =\left\{ \left. I\subseteq R\text{ is the ideal} \right|a\in I \right\}, Σ={ IR is the idealaI},
[ a ] = ⋂ I ∈ Σ   I \left[ a \right]=\underset{I\in \Sigma }{\mathop{\bigcap }}\,I [a]=IΣI ,则由定理“理想的交还是理想”可知, [ a ] \left[ a \right] [a]也是 R R R的一个理想,称为 R R R的由 a a a生成的主理想。
R R R是一个含幺交换环时,由 a a a生成的主理想 ⟨ a ⟩ = R a = { r a ∣ r ∈ R } \left\langle a \right\rangle =Ra=\left\{ \left. ra \right|r\in R \right\} a=Ra={ rarR}

整环定义
  若环 R ≠ { 0 } R\ne \left\{ 0 \right\} R={ 0},且 ∀ a , b ∈ R ,   a , b ≠ 0   ⇒   a b ≠ 0 \forall a,b\in R,\text{ }a,b\ne 0\text{ }\Rightarrow \text{ }ab\ne 0 a,bR, a,b=0  ab=0 或者
a b = 0   ⇒   a = 0  or  b = 0 ab=0\text{ }\Rightarrow \text{ }a=0\text{ }\text{or }b=0 ab=0  a=0 or b=0
则称 R R R是整环(Integral Ring)。

主理想(整)环定义
  若一个(整)环 R R R的每个理想 I I I都是某 a ∈ R a\in R aR生成的主理想,则称 R R R为主理想(整)环。

  根据下文中的涉及讨论环 A A A的可逆元素和不可逆元素,以及原文中

The non-zero ideals of A A A are of the form m ( A ) = π n A \mathfrak{m}\left( A \right)={ {\pi }^{n}}A m(A)=πnA

我们认为这一章节所讨论的离散赋值环 A A A是一个含幺交换环

2. prime ideal

prime ideal – 素理想

素理想定义
   R R R是一个交换环, P ⊂ R P\subset R PR R R R真理想,称 P P P为素理想,若
a b ∈ P   ⇒   a ∈ P  or  b ∈ P ,   ∀ a , b ∈ R ab\in P\text{ }\Rightarrow \text{ }a\in P\text{ or }b\in P,\text{ }\forall a,b\in R abP  aP or bP, a,bR

3. Recall that an ideal p \mathfrak{p} p of a commutative ring A A A is called prime if the quotient ring A / p    {A}/{\mathfrak{p}}\; A/p is an integral domain.

   P P P是素理想,当且仅当 R / P R/P R/P是整环。
证明

  1. ⇒ \Rightarrow
    a , b ∈ R a,b\in R a,bR且在 R / P R/P R/P中有 a b ‾ = 0 ‾ \overline{ab}=\overline{0} ab=0 ⇒ a b ∈ P \Rightarrow ab\in P abP ⇒ a ∈ P \Rightarrow a\in P aP b ∈ P b\in P bP
    ⇒ \Rightarrow R / P R/P R/P中,有 a ‾ = 0 ‾ \overline{a}=\overline{0} a=0 b ‾ = 0 ‾ \overline{b}=\overline{0} b=0
  2. ⇐ \Leftarrow
    假设 a b ∈ P   ⇒ ab\in P\text{ }\Rightarrow abP  R / P R/P R/P a b ‾ = 0 ‾ \overline{ab}=\overline{0} ab=0 ⇒ \Rightarrow R / P R/P R/P a ‾ = 0 ‾ \overline{a}=\overline{0} a=0 b ‾ = 0 ‾ \overline{b}=\overline{0} b=0 ⇒   a ∈ P \Rightarrow \text{ }a\in P  aP b ∈ P b\in P bP

4. The invertible elements of A A A are those elements that do not belong to m ( A ) \mathfrak{m}\left( A \right) m(A)

  意思是主理想整环 A A A中可逆的元素是不属于 m ( A ) \mathfrak{m}\left( A \right) m(A)的那些元素。更系统地讲, A A A中所有的可逆元素 a ∉ m ( A ) a\notin \mathfrak{m}\left( A \right) a/m(A) A A A中所有的不可逆元素 b ∈ m ( A ) b\in \mathfrak{m}\left( A \right) bm(A)

A A A中所有的可逆元素 a ∉ m ( A ) a\notin \mathfrak{m}\left( A \right) a/m(A)
证明
首先, A A A是一个含幺交换环, 1 ∈ A 1\in A 1A 1 1 1为可逆元素,因此 A A A中的可逆元素集非空。
理想 m ( A ) \mathfrak{m}\left( A \right) m(A) A A A的子环,因此非空。 ∀ a ∈ m ( A ) \forall a\in \mathfrak{m}\left( A \right) am(A),若 ∃ a − 1 ∈ A \exists { {a}^{-1}}\in A a1A使得 a a − 1 = 1 a{ {a}^{-1}}=1 aa1=1,则有推理
m ( A ) × A ⊆ m ( A ) a ∈ m ( A ) ,   a − 1 ∈ A ,   a a − 1 = 1 }   ⇒   1 ∈ m ( A ) 1 ∈ m ( A ) 1 × A = A m ( A ) × A ⊆ m ( A ) }   ⇒   A ⊆ m ( A ) \begin{aligned} & \left. \begin{aligned} & \mathfrak{m}\left( A \right)\times A\subseteq \mathfrak{m}\left( A \right) \\ & a\in \mathfrak{m}\left( A \right),\text{ }{ {a}^{-1}}\in A,\text{ }a{ {a}^{-1}}=1 \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }1\in \mathfrak{m}\left( A \right) \\ & \\ & \left. \begin{aligned} & 1\in \mathfrak{m}\left( A \right) \\ & 1\times A=A \\ & \mathfrak{m}\left( A \right)\times A\subseteq \mathfrak{m}\left( A \right) \\ \end{aligned} \right\}\text{ }\Rightarrow \text{ }A\subseteq \mathfrak{m}\left( A \right) \\ \end{aligned} m(A)×Am(A)am(A), a

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值