ax²+bx+c≡0 mod m 和 x²≡a mod p的解存在性分析

本文详细探讨了二次同余方程ax²+bx+c≡0模m的解的存在性,通过素因子分解转换为模素数的同余方程,并基于不同条件分析解的情况。同时,深入讨论了模p的平方剩余与平方非剩余,包括Euler判别法,以及模p的平方剩余个数。文章提供了若干例题用于巩固理解。
摘要由CSDN通过智能技术生成

索引

f ( x ) = a x 2 + b x + c ≡ 0     m o d   m f\left( x \right)=a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod m f(x)=ax2+bx+c0 modm的解存在性分析

  1. m m m进行素因子分解得到
    m = p 1 e 1 ⋯ p n e n m={ {p}_{1}}^{ { {e}_{1}}}\cdots { {p}_{n}}^{ { {e}_{n}}} m=p1e1pnen
    则原同余式等价于下面的同余式组
    { a x 2 + b x + c ≡ 0     m o d   p 1 e 1 ⋮ a x 2 + b x + c ≡ 0     m o d   p n e n \left\{ \begin{matrix} a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod { {p}_{1}}^{ { {e}_{1}}} \\ \vdots \\ a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod { {p}_{n}}^{ { {e}_{n}}} \\ \end{matrix} \right. ax2+bx+c0 modp1e1ax2+bx+c0 modpnen
    故我们只需要讨论以素数模为模的同余式
    a x 2 + b x + c ≡ 0     m o d   p e a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod { {p}^{e}} ax2+bx+c0 modpe

  2. 欲求解 a x 2 + b x + c ≡ 0     m o d   p e a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod { {p}^{e}} ax2+bx+c0 modpe,只需要解出 a x 2 + b x + c ≡ 0     m o d   p a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod p ax2+bx+c0 modp
    f ( x ) ≡ 0     m o d   p f\left( x \right)\equiv 0\text{ }\bmod p f(x)0 modp无解,则 f ( x ) ≡ 0     m o d   p e f\left( x \right)\equiv 0\text{ }\bmod { {p}^{e}} f(x)0 modpe也无解。
    f ( x ) ≡ 0     m o d   p f\left( x \right)\equiv 0\text{ }\bmod p f(x)0 modp有解,则根据Hensel引理一步步迭代求解即可。因此我们只需要讨论同余式
    a x 2 + b x + c ≡ 0     m o d   p a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod p ax2+bx+c0 modp

  3. 下面基于 p p p a , b , c a,b,c a,b,c的关系进行分类讨论。

    1. p ∣ a   &   p ∣ b   &   p ∣ c \left. p \right|a\text{ }\And \text{ }\left. p \right|b\text{ }\And \text{ }\left. p \right|c pa & pb & pc,则同余式恒成立, ∀ x ∈ Z \forall x\in \mathbb{Z} xZ都是同余式的解。
    2. p ∣ a ,   p ∣ b ,   p ∣ c \left. p \right|a,\text{ }\left. p \right|b,\text{ }p\cancel{|}c pa, pb, p c,则 a x 2 + b x + c ≡ c ≡ 0     m o d   p a{ {x}^{2}}+bx+c\equiv c\cancel{\equiv }0\text{ }\bmod p ax2+bx+cc 0 modp,故同余式无解。
    3. p ∣ a ,   p ∣ b \left. p \right|a,\text{ }p\cancel{|}b pa, p b,则 a x 2 + b x + c ≡ b x + c ≡ 0     m o d   p a{ {x}^{2}}+bx+c\equiv bx+c\equiv 0\text{ }\bmod p ax2+bx+cbx+c0 modp有解(因为 gcd ⁡ ( b , p ) = 1 \gcd \left( b,p \right)=1 gcd(b,p)=1)。
    4. p > 2 ,   p ∣ a p>2,\text{ }p\cancel{|}a p>2, p a,则有
      gcd ⁡ ( a , p ) = 1 gcd ⁡ ( 2 , p ) = 1 } ⇒ gcd ⁡ ( 4 a , p ) = 1 \left. \begin{aligned} & \gcd \left( a,p \right)=1 \\ & \gcd \left( 2,p \right)=1 \\ \end{aligned} \right\}\Rightarrow \gcd \left( 4a,p \right)=1 gcd(a,p)=1gcd(2,p)=1}gcd(4a,p)=1
      对同余式进行等价转化如下。
      a x 2 + b x + c ≡ 0     m o d   p ⇔ 4 a ( a x 2 + b x + c ) = ( 2 a x + b ) 2 + 4 a c − b 2 ≡ 0     m o d   p ⇔ ( 2 a x + b ) 2 ≡ b 2 − 4 a c     m o d   p \begin{aligned} & a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod p \\ & \Leftrightarrow 4a\left( a{ {x}^{2}}+bx+c \right)={ {\left( 2ax+b \right)}^{2}}+4ac-{ {b}^{2}}\equiv 0\text{ }\bmod p \\ & \Leftrightarrow { {\left( 2ax+b \right)}^{2}}\equiv { {b}^{2}}-4ac\text{ }\bmod p \\ \end{aligned} ax2+bx+c0 modp4a(ax2+bx+c)=(2ax+b)2+4acb20 modp(2ax+b)2b24ac modp
      先解 y 2 ≡ Δ = b 2 − 4 a c { {y}^{2}}\equiv \Delta ={ {b}^{2}}-4ac y2Δ=b24ac,若无解,则 f ( x ) ≡ 0     m o d   p f\left( x \right)\equiv 0\text{ }\bmod p f(x)0 modp肯定也无解;若有解,再解 2 a x + b ≡ y     m o d   p 2ax+b\equiv y\text{ }\bmod p 2ax+by modp,而由于 gcd ⁡ ( 2 a , p ) = 1 \gcd \left( 2a,p \right)=1 gcd(2a,p)=1,因此这个一次同余式是肯定有解的,继而 f ( x ) ≡ 0     m o d   p f\left( x \right)\equiv 0\text{ }\bmod p f(x)0 modp肯定也是有解的。
    5. p = 2 ,   2 ∣ a p=2,\text{ }2\cancel{|}a p=2, 2 a,原同余式等价于
      a x 2 + b x + c ≡ ( 1 + b ) x ≡ c ≡ 0     m o d   2 a{ {x}^{2}}+bx+c\equiv \left( 1+b \right)x\equiv c\equiv 0\text{ }\bmod 2 ax2+bx+c(1+b)xc0 mod2
      b b b偶,则存在唯一解 x ≡ c     m o d   2 x\equiv c\text{ }\bmod 2 xc mod2;若 b b b c c c奇,则无解;若 b b b c c c偶,则有两解 x ≡ 0 , 1     m o d   2 x\equiv 0,1\text{ }\bmod 2 x0,1 mod2

  基于上述讨论,全面解决一般二次同余式 a x 2 + b x + c ≡ 0     m o d   m a{ {x}^{2}}+bx+c\equiv 0\text{ }\bmod m ax2+bx+c0 modm的唯一一个难点是解
y 2 ≡ b 2 − 4 a c     m o d   p { {y}^{2}}\equiv { {b}^{2}}-4ac\text{ }\bmod p y2b24ac modp
即涉及解如下形式的二次同余式
x 2 ≡ a     m o d   p { {x}^{2}}\equiv a\text{ }\bmod p x2a modp
其中 p p p是奇素数。这也就引出了下面要讨论的内容。

m m m的平方剩余与平方非剩余的定义

  设 a ∈ Z ,   m ∈ Z > 0 a\in \mathbb{Z},\text{ }m\in { {\mathbb{Z}}_{>0}} aZ, mZ>0

  若 x 2 ≡ a     m o d   m { {x}^{2}}\equiv a\text{ }\bmod m x2a modm有解,则称 a a a为模 m m m的平方剩余;

  若 x 2 ≡ a     m o d   m { {x}^{2}}\equiv a\text{ }\bmod m x2a modm无解,则称 a a a为模 m m m的平方非剩余。

x 2 ≡ a     m o d   p { {x}^{2}}\equiv a\text{ }\bmod p x2a modp p p p是一奇素数, gcd ⁡ ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1)的解存在性分析

  设 p p p是一奇素数, a ∈ Z a\in \mathbb{Z} aZ gcd ⁡ ( p , a ) = 1 \gcd \left( p,a \right)=1 gcd(p,a)=1,考虑同余式
x 2 ≡ a     m o d   p { {x}^{2}}\equiv a\text{ }\bmod p x2a modp

Euler判别法: p p p是一奇素数,若 gcd ⁡ ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1,则 a 是 模 p 的 平 方 剩 余 ⇔ a p − 1 2 ≡ 1     m o d   p , 此 时 恰 有 两 解 a 是 模 p 的 平 方 非 剩 余 ⇔ a p − 1 2 ≡ − 1     m o d   p \begin{aligned} & a是模p的平方剩余\Leftrightarrow { {a}^{\frac{p-1}{2}}}\equiv 1\text{ }\bmod p,此时恰有两解 \\ & a是模p的平方非剩余\Leftrightarrow { {a}^{\frac{p-1}{2}}}\equiv -1\text{ }\bmod p \\ \end{aligned} apa2p11 modp,apa2p11 modp

证明

  1. gcd ⁡ ( a , p ) = 1 \gcd \left( a,p \right)=1 gcd(a,p)=1 p p p是素数,根据欧拉定理,有
    a φ ( p ) = a p − 1 ≡ 1     m o d   p { {a}^{\varphi \left( p \right)}}={ {a}^{p-1}}\equiv 1\text{ }\bmod p

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值