《高等代数学》(姚慕生),例1.5.7

题目

  求下列行列式的值:
F n = ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 2 0 0 0 ⋯ − 1 λ + a 1 ∣ . {{F}_{n}}=\left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{2}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{1}} \\ \end{matrix} \right|. Fn=λ10000λ10000λ00000λ1anan1an2a2λ+a1.

法一:按第1行展开

F n = ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 2 0 0 0 ⋯ − 1 λ + a 1 ∣ → = 按 r 1 展 开 λ × ( − 1 ) 1 + 1 × ∣ λ 0 0 ⋯ 0 a n − 1 − 1 λ 0 ⋯ 0 a n − 2 0 − 1 λ ⋯ 0 a n − 3 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 2 0 0 0 ⋯ − 1 λ + a 1 ∣ + a n × ( − 1 ) 1 + n × ∣ − 1 λ − 1 λ − 1 ⋱ ⋱ λ − 1 ∣ = 后 面 的 行 列 式 是 上 三 角 形 式 λ F n − 1 + a n × ( − 1 ) n + 1 × ( − 1 ) n − 1 , \begin{aligned} & {{F}_{n}}=\left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{2}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{1}} \\ \end{matrix} \right| \\ & \xrightarrow[{=}]{{按r_1展开}}\lambda \times {{\left( -1 \right)}^{1+1}}\times \left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n-1}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-2}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-3}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{2}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{1}} \\ \end{matrix} \right|+{{a}_{n}}\times {{\left( -1 \right)}^{1+n}}\times \left| \begin{matrix} -1 & \lambda & {} & {} & {} \\ {} & -1 & \lambda & {} & {} \\ {} & {} & -1 & \ddots & {} \\ {} & {} & {} & \ddots & \lambda \\ {} & {} & {} & {} & -1 \\ \end{matrix} \right| \\ & \xlongequal{后面的行列式是上三角形式}\lambda {{F}_{n-1}}+{{a}_{n}}\times {{\left( -1 \right)}^{n+1}}\times {{\left( -1 \right)}^{n-1}}, \\ \end{aligned} Fn=λ10000λ10000λ00000λ1anan1an2a2λ+a1r1 =λ×(1)1+1×λ10000λ10000λ00000λ1an1an2an3a2λ+a1+an×(1)1+n×1λ1λ1λ1 λFn1+an×(1)n+1×(1)n1,
即得递推式
F n = λ F n − 1 + a n ,   n ≥ 2. (*) {{F}_{n}}=\lambda {{F}_{n-1}}+{{a}_{n}},\text{ }n\ge 2. \tag{*} Fn=λFn1+an, n2.(*)
重复应用该递推式,最终可得
F n = λ ( ⋯ ( λ ( λ F 1 + a 2 ) + a 3 ) ⋯   ) + a n = λ n − 1 F 1 + λ n − 2 a 2 + λ n − 3 a 3 + ⋯ + λ a n − 1 + a n . \begin{aligned} & {{F}_{n}}=\lambda \left( \cdots \left( \lambda \left( \lambda {{F}_{1}}+{{a}_{2}} \right)+{{a}_{3}} \right)\cdots \right)+{{a}_{n}} \\ & ={{\lambda }^{n-1}}{{F}_{1}}+{{\lambda }^{n-2}}{{a}_{2}}+{{\lambda }^{n-3}}{{a}_{3}}+\cdots +\lambda {{a}_{n-1}}+{{a}_{n}}. \\ \end{aligned} Fn=λ((λ(λF1+a2)+a3))+an=λn1F1+λn2a2+λn3a3++λan1+an.
n ≥ 2 n\ge 2 n2时, F n {{F}_{n}} Fn的形式是确定的,没有争议的。而当 n = 1 n=1 n=1时, F 1 {{F}_{1}} F1可视为 λ \lambda λ或者 λ + a 1 \lambda +{{a}_{1}} λ+a1(二者都是言之有理的),于是最终有
F n = { λ n + ∑ j = 2 n λ n − j a j ,   F 1 = λ , λ n + ∑ j = 1 n λ n − j a j ,   F 1 = λ + a 1 . (1) {{F}_{n}}=\left\{ \begin{aligned} & {{\lambda }^{n}}+\sum\limits_{j=2}^{n}{{{\lambda }^{n-j}}{{a}_{j}}},\text{ }{{F}_{1}}=\lambda , \\ & {{\lambda }^{n}}+\sum\limits_{j=1}^{n}{{{\lambda }^{n-j}}{{a}_{j}}},\text{ }{{F}_{1}}=\lambda +{{a}_{1}}. \\ \end{aligned} \right. \tag{1} Fn=λn+j=2nλnjaj, F1=λ,λn+j=1nλnjaj, F1=λ+a1.(1)

法二:按第1列展开

F n = ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 2 0 0 0 ⋯ − 1 λ + a 1 ∣ → = 按 c 1 展 开 λ × ( − 1 ) 1 + 1 × ∣ λ 0 0 ⋯ 0 a n − 1 − 1 λ 0 ⋯ 0 a n − 2 0 − 1 λ ⋯ 0 a n − 3 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 2 0 0 0 ⋯ − 1 λ + a 1 ∣ + ( − 1 ) × ( − 1 ) 2 + 1 × ∣ a n − 1 λ a n − 2 − 1 λ a n − 3 − 1 ⋱ ⋮ ⋱ λ a 2 − 1 λ + a 1 ∣ = 后 一 个 行 列 式 按 r 1 展 开 λ F n − 1 + a n × ( − 1 ) 1 + n × ∣ − 1 λ − 1 λ − 1 ⋱ ⋱ λ − 1 ∣ = 后 一 个 行 列 式 是 上 三 角 形 式 λ F n − 1 + a n × ( − 1 ) n + 1 × ( − 1 ) n − 1 , \begin{aligned} & {{F}_{n}}=\left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{2}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{1}} \\ \end{matrix} \right| \\ & \xrightarrow[{=}]{{按c_1展开}}\lambda \times {{\left( -1 \right)}^{1+1}}\times \left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n-1}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-2}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-3}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{2}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{1}} \\ \end{matrix} \right|+\left( -1 \right)\times {{\left( -1 \right)}^{2+1}}\times \left| \begin{matrix} {} & {} & {} & {} & {} & {{a}_{n}} \\ -1 & \lambda & {} & {} & {} & {{a}_{n-2}} \\ {} & -1 & \lambda & {} & {} & {{a}_{n-3}} \\ {} & {} & -1 & \ddots & {} & \vdots \\ {} & {} & {} & \ddots & \lambda & {{a}_{2}} \\ {} & {} & {} & {} & -1 & \lambda +{{a}_{1}} \\ \end{matrix} \right| \\ & \xlongequal{后一个行列式按r_1展开}\lambda {{F}_{n-1}}+{{a}_{n}}\times {{\left( -1 \right)}^{1+n}}\times \left| \begin{matrix} -1 & \lambda & {} & {} & {} \\ {} & -1 & \lambda & {} & {} \\ {} & {} & -1 & \ddots & {} \\ {} & {} & {} & \ddots & \lambda \\ {} & {} & {} & {} & -1 \\ \end{matrix} \right| \\ & \xlongequal{后一个行列式是上三角形式}\lambda {{F}_{n-1}}+{{a}_{n}}\times {{\left( -1 \right)}^{n+1}}\times {{\left( -1 \right)}^{n-1}}, \\ \end{aligned} Fn=λ10000λ10000λ00000λ1anan1an2a2λ+a1c1 =λ×(1)1+1×λ10000λ10000λ00000λ1an1an2an3a2λ+a1+(1)×(1)2+1×1λ1λ1λ1anan2an3a2λ+a1r1 λFn1+an×(1)1+n×1λ1λ1λ1 λFn1+an×(1)n+1×(1)n1,
即有
F n = λ F n − 1 + a n ,   n ≥ 2. {{F}_{n}}=\lambda {{F}_{n-1}}+{{a}_{n}},\text{ }n\ge 2. Fn=λFn1+an, n2.
结果同法一中的式 ( ∗ ) \left( * \right) ()。之后的分析过程同法一。

法三:按最后一行展开

F n = ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 2 0 0 0 ⋯ − 1 λ + a 1 ∣ → = c n − 1 → c n ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ λ + a 2 0 0 0 ⋯ − 1 λ + a 1 − 1 ∣ → = 按 r n 展 开 ( − 1 ) × ( − 1 ) n + ( n − 1 ) × ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 3 0 0 0 ⋯ − 1 λ + a 2 ∣ j j j j j j j j + ( λ + a 1 − 1 ) × ( − 1 ) n + n × ∣ λ − 1 λ − 1 λ ⋱ ⋱ − 1 λ ∣ → = 后 一 个 行 列 式 是 下 三 角 形 式 ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a 3 0 0 0 ⋯ − 1 λ + a 2 ∣ + λ n − 1 ( λ + a 1 − 1 ) , (**) \begin{aligned} & {{F}_{n}}=\left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{2}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{1}} \\ \end{matrix} \right|\xrightarrow[{=}]{{c_{n-1} \to c_n}}\left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & \lambda +{{a}_{2}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{1}}-1 \\ \end{matrix} \right| \\ & \xrightarrow[{=}]{{按r_n展开}}\left( -1 \right)\times {{\left( -1 \right)}^{n+\left( n-1 \right)}}\times \left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{3}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{2}} \\ \end{matrix} \right| \\ & \phantom{jjjjjjjj}+\left( \lambda +{{a}_{1}}-1 \right)\times {{\left( -1 \right)}^{n+n}}\times \left| \begin{matrix} \lambda & {} & {} & {} & {} \\ -1 & \lambda & {} & {} & {} \\ {} & -1 & \lambda & {} & {} \\ {} & {} & \ddots & \ddots & {} \\ {} & {} & {} & -1 & \lambda \\ \end{matrix} \right| \\ & \xrightarrow[{=}]{{后一个行列式是下三角形式}}\left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{3}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{2}} \\ \end{matrix} \right|+{{\lambda }^{n-1}}\left( \lambda +{{a}_{1}}-1 \right), \\ \end{aligned} \tag{**} Fn=λ10000λ10000λ00000λ1anan1an2a2λ+a1cn1cn =λ10000λ10000λ00000λ1anan1an2λ+a2λ+a11rn =(1)×(1)n+(n1)×λ10000λ10000λ00000λ1anan1an2a3λ+a2jjjjjjjj+(λ+a11)×(1)n+n×λ1λ1λ1λ =λ10000λ10000λ00000λ1anan1an2a3λ+a2+λn1(λ+a11),(**)

G m : = ∣ λ 0 0 ⋯ 0 a n − 1 λ 0 ⋯ 0 a n − 1 0 − 1 λ ⋯ 0 a n − 2 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ λ a m + 1 0 0 0 ⋯ − 1 λ + a m ∣ ,   1 ≤ m ≤ n . {{G}_{m}}:=\left| \begin{matrix} \lambda & 0 & 0 & \cdots & 0 & {{a}_{n}} \\ -1 & \lambda & 0 & \cdots & 0 & {{a}_{n-1}} \\ 0 & -1 & \lambda & \cdots & 0 & {{a}_{n-2}} \\ \vdots & \vdots & \vdots & {} & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & {{a}_{m+1}} \\ 0 & 0 & 0 & \cdots & -1 & \lambda +{{a}_{m}} \\ \end{matrix} \right|,\text{ }1\le m\le n. Gm:=λ10000λ10000λ00000λ1anan1an2am+1λ+am, 1mn.
则有 F n = G 1 {{F}_{n}}={{G}_{1}} Fn=G1。此时式 ( ∗ ∗ ) \left(**\right) ()等价于
G 1 = G 2 + λ n − 1 ( λ + a 1 − 1 ) . {{G}_{1}}={{G}_{2}}+{{\lambda }^{n-1}}\left( \lambda +{{a}_{1}}-1 \right). G1=G2+λn1(λ+a11).
同理可得
G 2 = G 3 + λ n − 2 ( λ + a 2 − 1 ) , G 3 = G 4 + λ n − 3 ( λ + a 3 − 1 ) , ⋮ G m = G m + 1 + λ n − m ( λ + a m − 1 ) , ⋮ G n − 1 = G n + λ ( λ + a n − 1 − 1 ) . \begin{matrix} {{G}_{2}}={{G}_{3}}+{{\lambda }^{n-2}}\left( \lambda +{{a}_{2}}-1 \right), \\ {{G}_{3}}={{G}_{4}}+{{\lambda }^{n-3}}\left( \lambda +{{a}_{3}}-1 \right), \\ \vdots \\ {{G}_{m}}={{G}_{m+1}}+{{\lambda }^{n-m}}\left( \lambda +{{a}_{m}}-1 \right), \\ \vdots \\ {{G}_{n-1}}={{G}_{n}}+\lambda \left( \lambda +{{a}_{n-1}}-1 \right). \\ \end{matrix} G2=G3+λn2(λ+a21),G3=G4+λn3(λ+a31),Gm=Gm+1+λnm(λ+am1),Gn1=Gn+λ(λ+an11).
于是我们有
F n = G 1 = G n + ∑ j = 1 n − 1 λ n − j ( λ + a j − 1 ) = G n + ∑ j = 1 n − 1 λ n − j a j + ∑ j = 1 n − 1 λ n − j ( λ − 1 ) = G n + ∑ j = 1 n − 1 λ n − j a j + ( λ n − λ n − 1 + λ n − 1 − λ n − 2 + ⋯ + λ 2 − λ ) = G n + ∑ j = 1 n − 1 λ n − j a j + ( λ n − λ ) = { λ n + ∑ j = 1 n λ n − j a j ,   G n = λ + a n , λ n + ∑ j = 1 n − 1 λ n − j a j ,   G n = λ . (2) \begin{aligned} & {{F}_{n}}={{G}_{1}}={{G}_{n}}+\sum\limits_{j=1}^{n-1}{{{\lambda }^{n-j}}\left( \lambda +{{a}_{j}}-1 \right)} \\ & ={{G}_{n}}+\sum\limits_{j=1}^{n-1}{{{\lambda }^{n-j}}{{a}_{j}}}+\sum\limits_{j=1}^{n-1}{{{\lambda }^{n-j}}\left( \lambda -1 \right)} \\ & ={{G}_{n}}+\sum\limits_{j=1}^{n-1}{{{\lambda }^{n-j}}{{a}_{j}}}+\left( {{\lambda }^{n}}-{{\lambda }^{n-1}}+{{\lambda }^{n-1}}-{{\lambda }^{n-2}}+\cdots +{{\lambda }^{2}}-\lambda \right) \\ & ={{G}_{n}}+\sum\limits_{j=1}^{n-1}{{{\lambda }^{n-j}}{{a}_{j}}}+\left( {{\lambda }^{n}}-\lambda \right) \\ & =\left\{ \begin{aligned} & {{\lambda }^{n}}+\sum\limits_{j=1}^{n}{{{\lambda }^{n-j}}{{a}_{j}}},\text{ }{{G}_{n}}=\lambda +{{a}_{n}}, \\ & {{\lambda }^{n}}+\sum\limits_{j=1}^{n-1}{{{\lambda }^{n-j}}{{a}_{j}}},\text{ }{{G}_{n}}=\lambda . \\ \end{aligned} \right. \\ \end{aligned} \tag{2} Fn=G1=Gn+j=1n1λnj(λ+aj1)=Gn+j=1n1λnjaj+j=1n1λnj(λ1)=Gn+j=1n1λnjaj+(λnλn1+λn1λn2++λ2λ)=Gn+j=1n1λnjaj+(λnλ)=λn+j=1nλnjaj, Gn=λ+an,λn+j=1n1λnjaj, Gn=λ.(2)

注记

  比较法一中的结果:式(1),和法三中的结果:式(2),发现当法一中的 F 1 {{F}_{1}} F1 λ + a 1 \lambda +{{a}_{1}} λ+a1,且法三中的 G n {{G}_{n}} Gn λ + a n \lambda +{{a}_{n}} λ+an时结果是一致的。这也说明了将 F 1 {{F}_{1}} F1视为 λ + a 1 \lambda +{{a}_{1}} λ+a1是比较恰当的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此账号已停更

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值