论文
文章平均质量分 94
画尽天下,一世繁华
这个作者很懒,什么都没留下…
展开
-
一文看懂MobileNet
文章目录MobileNet框架深度可分离卷积论文链接代码链接MobileNet框架深度可分离卷积传统卷积操作是在卷积的过程中既进行卷积操作,同时将输入组合成新的输出。深度可分离卷积将这一步骤分成两步。如下图2.(a)就是一个标准卷积操作,分解成图2.(b)中的深度卷积和图2.©的1*1卷积。为什么要分离呢?为了降低计算成本。首先,标准卷积输入DF∗DF∗M(input),DFD_F*D_F*M(input),D_FDF∗DF∗M(input),DF是输入特征图宽度和高度,MMM是输入原创 2021-04-21 19:48:13 · 376 阅读 · 0 评论 -
DEX:Deep EXpectation of apparent age from a single image(面部矫正+VGG-16 年龄估计)
年龄估计论文阅读《DEX:Deep EXpectation of apparent age from a single image》网络图Input Image:输入图片Face Detection:使用off-the-shelf人脸检测器获取人脸位置。人脸检测器取-60°到60°,每次间隔5°;取得分最高的那张脸,并相应地将其旋转到正面向上的位置。很少有图片不能找到一张脸。这种情况下,取整个图像。Cropped face:拓展脸图像的大小,在左右两边取其宽度的40%,上下两边取其高度的40%。原创 2020-12-15 15:27:02 · 367 阅读 · 0 评论 -
Deep label refinement for age estimation(知识蒸馏+标签学习在年龄估计中的应用)
Deep label refinement for age estimation研究问题1.不同性别/种族的人类年龄差异不同2.面部图像中光照、姿势、表情、化妆会影响年龄估计的精度3.模型的泛化能力,很难获得准确的真实年龄标签分布学习可以解决不同年龄之间的相关性和不确定性,提高数据的利用率。Label distribution refineryThe initial ancestor标签分布学习的初始网络Rθ1R_{\theta_1}Rθ1的目标是最小化交叉熵损失函数,将预测的标签分布原创 2021-01-07 10:46:05 · 730 阅读 · 1 评论