数据增强
文章平均质量分 95
画尽天下,一世繁华
这个作者很懒,什么都没留下…
展开
-
数据增强(二、GridMask)
GridMask(2020)论文链接代码链接GridMask给定一幅图像,随机的移除一个不连续的像素集合。输入图像x∈RH∗W∗Cx\in R^{H*W*C}x∈RH∗W∗C,M∈{0,1}H∗WM \in \{0,1\}^{H*W}M∈{0,1}H∗W为待除去像素的二进制掩码(M=1M=1M=1则保留像素,否则移除该像素),x~\tilde{x}x~为结果。(r,d,δx,δy)(r,d,\delta_x,\delta_y)(r,d,δx,δy)表示一个MMM块,每个遮挡都是通过如图原创 2021-01-22 17:00:25 · 1432 阅读 · 0 评论 -
数据增强(一、Random-Erasing)
Random Erasing Data Augmentation(随机擦除数据增强)优势一种轻量级方法,不需要任何额外的参数或内存消耗,它可以在不改变学习策略的情况下与各种CNN模型集成对于现有的数据增强和正则化方法的补充。两者结合使用,Random Erasing进一步提高了识别性能。在图像分类、目标检测和行人重识别方面,提高了深度模型的性能提高鲁棒性。实验数据集图像分类CIFAR-10包含10个类的50000个训练图像和10000个测试图像(3232彩色图像).CIFAR-100包原创 2021-01-17 17:14:06 · 3373 阅读 · 3 评论