Squeeze-and-Excitation Networks(SENet:GAP+2个FC)通道注意力模型公式解析

Squeeze-and-Excitation Networks(SENet)利用通道注意力机制提升网络表征能力。文章详细介绍了SE模块,包括Squeeze步骤的全局平均池化和Excitation步骤的全连接层操作,以及其在SE-Inception和SE-ResNet模块中的应用。实验结果显示,SENet能提高准确率且参数量影响不大。
摘要由CSDN通过智能技术生成

Squeeze-and-Excitation Networks

代码

SE-Net代码

论文

SENet论文

SENet:通道注意力机制

SENet简易网络图
在这里插入图片描述
1.Squeeze:(全局信息嵌入)每个卷积核都与一个区域相关联,但是每个卷积核没有办法和该区域之外的信息(上下文信息)相关联。
简单的说,通过 z ∈ R C z\in R^C zRC全局平均池化收缩 U U U 的空间维度,如下式:
在这里插入图片描述
2.Excitation:(全捕获引导通道依赖)
在这里插入图片描述
简单来说就是两层全连接层,一层降维,一层升维。
该函数应该满足两个条件:一是灵活性(通道之间的非线性交互);二是它能够学习一种不相互排斥的关系,目的是确保多个通道被强调(不是强制的独热向量激活)
在这里插入图片描述
W 1 ∈ R C r ∗ C W_1\in R^ { \frac{C}{r}*C} W1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值