attention机制
文章平均质量分 92
画尽天下,一世繁华
这个作者很懒,什么都没留下…
展开
-
一文搞懂CBAM(通道+空间注意机制)
attention机制论文阅读《CBAM : Convolutional Block Attention Module》CBAM先上网络图。简单说明一下,该结构由两个顺序子模块:通道模块和空间模块。特征图在每个深度网络的每个卷积块上自适应调整。由上图所示,有输入、通道注意力模块、空间注意力模块和输出组成。输入特征F∈RC∗H∗WF\in R^{C*H*W}F∈RC∗H∗W,然后通道注意力模块一维卷积${M_c}R^{C11} $,...原创 2021-02-01 20:48:52 · 5151 阅读 · 0 评论 -
轻量模块注意力机制ECA-Net(注意力模块+一维卷积)
ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks(2020)注意力模块比较纵坐标为准确性,横坐标为模型参数量(复杂度)。ECA模块Avoiding Dimensionaluity ReductionSE-Net在SE-Net中,通道注意力模块通过公式(2)进行降维(简单来说,就是SE-Net模块中的全连接层),这样让通道和权值之间没有直接联系。下表中的SE-Var1(无参数)、SE-Va原创 2021-01-08 17:05:33 · 25896 阅读 · 7 评论 -
Squeeze-and-Excitation Networks(SENet:GAP+2个FC)通道注意力模型公式解析
Squeeze-and-Excitation NetworksSENet:通道注意力机制1.卷积操作:Ftr:X∈RH′∗W′∗C′→U∈RH∗W∗CF_{tr}:X\in R^{H'*W'*C'} \to U\in R^{H*W*C}Ftr:X∈RH′∗W′∗C′→U∈RH∗W∗C,V=[v1,v2,……,vc]V=[v_1,v_2,……,v_c]V=[v1,v2,……,vc]表示卷积核学习到的一组参数。2.Squeeze:(全局信息嵌入)每个卷积核都与一个区域相关联,但是每个卷积核没有原创 2021-01-07 17:02:58 · 1814 阅读 · 0 评论