overfitting and underfitting详解
overfitting与underfitting的个人思考
bias
模型预测的平均值和真实值之间的误差。bias高,则意味着模型没有很好的拟合数据集。
varience
每次模型单独预测的值和模型多次预测的平均值之间的误差。varience高,则意味着模型泛化能力差。
underfitting & overfitting
我们可以将一个模型看成一个杯子,这个杯子的大小由模型的参数量决定,参数量大,则杯子大;参数量小,则容器小。而数据量则是水。
当参数量小,也就是杯子小(相对于水的量),水溢出来了,
原创
2020-10-20 11:34:43 ·
589 阅读 ·
0 评论