文章目录
Random Erasing Data Augmentation(随机擦除数据增强)
优势
- 一种轻量级方法,不需要任何额外的参数或内存消耗,它可以在不改变学习策略的情况下与各种CNN模型集成
- 对于现有的数据增强和正则化方法的补充。两者结合使用,Random Erasing进一步提高了识别性能。
- 在图像分类、目标检测和行人重识别方面,提高了深度模型的性能
- 提高鲁棒性。
实验数据集
图像分类
CIFAR-10包含10个类的50000个训练图像和10000个测试图像(3232彩色图像).
CIFAR-100包含100个类的50000个训练图像和10000个测试图像(3232彩色图像)
Fashion-MNIST包含了10个类的60000个训练图像和10000个测试图像(28*28灰度图像)
目标检测
PASCAL VOC 2007包含24640个带注释对象的9963幅图像。
行人重识别
Market-1501包含32666个标记的边界框,其中包含6个不同摄像机捕获的1501个个体。数据集分成两部分:12963幅图像,751个个体用于训练;19732幅图像,750个个体用于测试。
DukeMTMC-reID包含8个高分辨率相机拍摄的1812个个体的36411幅图像。数据集分成两部分:16533个图像,702个个体用于训练;14096个图像,1467个个体用于测试
CUHK03包含1467个个体的14096幅图像。
Random Erasing
随机擦除随机选择图像中的一个矩形区域 I e I_e Ie,并用随机值擦除其像素。假设训练图像大小为 W ∗ H W*H W∗H,图像面积 S = W ∗ H S=W*H S=W∗H。随机初始化“擦除矩形”大小为 S e S_e Se,其中 S e S ∈ ( s l , s h ) \frac{S_e}{S}\in (s_l,s_h) SSe