数据增强(一、Random-Erasing)

本文介绍了Random Erasing数据增强方法,一种在图像分类、目标检测和行人重识别任务中提高模型性能的技术。它随机选择图像中的矩形区域并用随机值填充,增加模型对遮挡的鲁棒性。实验结果显示,该方法与其他数据增强技术如随机裁剪相结合,能显著提升模型的准确率。
摘要由CSDN通过智能技术生成

Random Erasing Data Augmentation(随机擦除数据增强)

优势

  1. 一种轻量级方法,不需要任何额外的参数或内存消耗,它可以在不改变学习策略的情况下与各种CNN模型集成
  2. 对于现有的数据增强和正则化方法的补充。两者结合使用,Random Erasing进一步提高了识别性能。
  3. 在图像分类、目标检测和行人重识别方面,提高了深度模型的性能
  4. 提高鲁棒性。

实验数据集

图像分类
CIFAR-10包含10个类的50000个训练图像和10000个测试图像(3232彩色图像).
CIFAR-100包含100个类的50000个训练图像和10000个测试图像(32
32彩色图像)
Fashion-MNIST包含了10个类的60000个训练图像和10000个测试图像(28*28灰度图像)


目标检测
PASCAL VOC 2007包含24640个带注释对象的9963幅图像。
行人重识别
Market-1501包含32666个标记的边界框,其中包含6个不同摄像机捕获的1501个个体。数据集分成两部分:12963幅图像,751个个体用于训练;19732幅图像,750个个体用于测试。
DukeMTMC-reID包含8个高分辨率相机拍摄的1812个个体的36411幅图像。数据集分成两部分:16533个图像,702个个体用于训练;14096个图像,1467个个体用于测试
CUHK03包含1467个个体的14096幅图像。

Random Erasing

随机擦除随机选择图像中的一个矩形区域 I e I_e Ie,并用随机值擦除其像素。假设训练图像大小为 W ∗ H W*H WH,图像面积 S = W ∗ H S=W*H S=WH。随机初始化“擦除矩形”大小为 S e S_e Se,其中 S e S ∈ ( s l , s h ) \frac{S_e}{S}\in (s_l,s_h) SSe

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值