DR特征分割

本文介绍了医学影像中的糖尿病视网膜病变(DR)特征分割,包括血管分割的挑战,如重叠结构和低对比度图像。讨论了基于像素处理、统计学、人工神经网络和模糊理论的分割方法,旨在帮助医生更准确地识别和分析DR特征。
摘要由CSDN通过智能技术生成

本文为2019年西安交通大学计算机辅助诊断答辩综述的糖尿病视网膜病变特征分割部分

DR特征分割

1 分割综述

在医学临床上,医生首先要知道的是病灶的位置、大小以及和周围正常组织之间的关系,这可以通过分割过程来达到这个目的。
而在DR诊断中,常需要将血管、微动脉瘤、渗出物等特征分割出来,以便医生判断病情。(我们着重讲述分割血管。)
在这里插入图片描述

2 分割挑战

  1. 在眼底成像过程中,不同深度的视网膜结构投射到具有最大强度的二维图像上,会导致非血管结构的重叠,和低对比度图像中细血管的可见性降低。
  2. 成像会引入伪影、不均匀照明等不利因素。
  3. 中央凹、视盘、视网膜边界、硬性渗出物、出血和其他病理改变呈现出复杂的情况,需要考虑。
  4. 中央反射呈白色条带,通常位于动脉(上分支血管)的显著位置,可能会导致错误的分割过程。

3 分割方法

3.1 基于像素处理的分割方法

利用图像中像素的特征来进行分割是比较常用的方法,采用的方法包括选取灰度级、利用彩色、多谱灰度直方图等。在医学影像中,它的生物学依据是“同一种人体组织具有相同或相似的灰度或色彩的概率最大”。因此图像中的各个部分的图像可以用灰度级的差别来划分。
直方图阈值分割:如果图像中有两种灰度,一个代表物体, 另一个代表背景,物体和

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值