深度学习中的经典模型:VGG详解

在深度学习的图像分类任务中,VGG是一个不可忽视的经典模型。它由牛津大学的Visual Geometry Group(视觉几何组)与2014年提出,并在当年的ImageNet挑战赛中取得了优异的成绩。接下来本文将带你一起了解VGG模型及其网络结构和代码实现。

VGG是什么?

VGG是一种用于图像分类的卷积神经网络(CNN)模型。它的名字来源于提出它的研究团队——Visual Geometry Group。VGG的核心思想是通过堆叠多个小尺寸的卷积层来构建深层网络,从而提取图像中的复杂特征。

VGG有多个版本,其中最常用的是VGG16和VGG19,数字代表网络的层数(包括卷积层和全连接层)。

VGG的特点

VGG的核心特点可以总结为以下几点:

  1. 小卷积核:VGG主要使用3×3的小娟集合,而不是更大的卷积核(如5×5或7×7)。小卷积核可以减少参数数量,同时通过堆叠多个小卷积核,可以达到和大卷积核相同的感受野。
  2. 深度堆叠:VGG通过不断堆叠卷积层和池化层,构建了一个非常深的网络(通常是16层或19层),从而能够提取更复杂的特征。
  3. 简单而统一的结构:VGG的结构非常规整,每一层的卷积核大小和步长都是固定的,便于理解和实现。

VGG的网络结构

VGG的网络结构可以分为两部分:卷积部分和全连接部分。

卷积部分

卷积部分由5个块(Block)组成,每个块包含多个卷积层和一个池化层。如下图所示:

VGG

  • Block1:
    • 2个卷积层:3×3卷积,64个滤波器->ReLU激活
    • 1个池化层:2×2最大池化,步长2
    • 输出尺寸:112×112×64
  • Block2:
    • 2个卷积层:3×3卷积,128个滤波器->ReLU激活
    • 1个池化层:2×2最大池化,步长2
    • 输出尺寸:56×56×128
  • Block3:
    • 3个卷积层:3×3卷积,256个滤波器->ReLU激活
    • 1个池化层:2×2最大池化,步长2
    • 输出尺寸:28×28×256
  • Block4:
    • 3个卷积层:3×3卷积,512个滤波器->ReLU激活
    • 1个池化层:2×2最大池化,步长2
    • 输出尺寸:14×14×512
  • Block5:
    • 3个卷积层:3×3卷积,512个滤波器->ReLU激活
    • 1个池化层:2×2最大池化,步长2
    • 输出尺寸:7×7×512

全连接部分

卷积部分的输出会通过全连接层映射到最终的类别概率。

  • Flatten层:将7×7×512的特征图展平为一个向量,长度为7×7×512=25088
  • 全连接层1:25088->4096,接ReLU激活Dropout
  • 全连接层2:4096->4096,接ReLU激活Dropout
  • 全连接层3:4096->1000(1000是ImageNet的类别数),接Softmax激活

VGG的作用

VGG的主要作用是提取图像的特征,并用于图像分类任务。它的优点包括:

  • 结构简单,易于理解和实现。
  • 通过深度堆叠,能够提取更复杂的特征。
  • 在ImageNet等大型数据集上表现优异。

不过,VGG的缺点是参数量较大,计算成本较高,因此在后来的研究中被更高效的模型(如ResNet)取代。

VGG的代码实现

以下是使用PyTorch实现VGG16的代码示例:

import torch
import torch.nn as nn


class VGG16(nn.Module):
    def __init__(self, num_classes=1000):
        super(VGG16, self).__init__()
        self.features = nn.Sequential(
            # Block 1
            nn.Conv2d(3, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员非鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值