P3_Pytorch实现天气识别

第P3周:Pytorch实现天气识别
● 难度:小白入门
● 语言:Python3、Pytorch

要求:

  1. 本地读取并加载数据。
  2. 测试集accuracy到达93%

提高:

  1. 测试集accuracy到达95%
  2. 调用模型识别一张本地图片

🏡 我的环境:

● 语言环境:Python3.8
● 编译器:jupyter notebook
● 深度学习环境:Pytorch
  ○ torch == 2.2.2 + cu121
  ○ torchvision == 0.17.2 + cu121

一、前期准备

1.设置GPU

import torch
from torch import nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os, PIL, pathlib, random

device = torch.device('cuda' if torch.cuda.is_available else 'cpu')

device
device(type='cuda')

2.导入数据

data_dir = './data/weather_photos/'
data_dir = pathlib.Path(data_dir)
# print(data_dir)

data_paths = list(data_dir.glob('*'))
# print(data_paths)
classNames = [str(path).split('\\')[2] for path in data_paths] # 路径不同, 选择到label的位置
classNames
['cloudy', 'rain', 'shine', 'sunrise']
import matplotlib.pyplot as plt
from PIL import Image

# 指定图像文件路径
image_folder = './data/weather_photos/cloudy/'

# 获取文件夹中的所有图像文件
image_files = [f for f in os.listdir(image_folder) if f.endswith(('.jpg', '.png', '.jpeg'))]

# 创建Matplotlib图像
fig, axes = plt.subplots(3, 8, figsize = (16, 6))

# 使用列表推导式加载和显示图像
for ax, img_file in zip(axes.flat, image_files):
    img_path = os.path.join(image_folder, img_file)
    img = Image.open(img_path)
    ax.imshow(img)
    ax.axis('off')
    
# 显示图像
plt.tight_layout()
plt.show()

在这里插入图片描述

total_datadir = './data/weather_photos/'

train_transforms = transforms.Compose([
    transforms.Resize([224, 224]), # Resize, 将图片统一尺寸
    transforms.ToTensor(), # 将PIL Image 或 np.ndarray转换成tensor,并归一到[0,1]之间
    transforms.Normalize( # 标准化处理-->转换为标准正态分布,使模型更容易收敛
        mean = [0.485, 0.456, 0.406], 
        std = [0.229, 0.224, 0.225]) # mean 和 std 从数据集随机抽样计算得到
])

total_data = datasets.ImageFolder(total_datadir, transform = train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/weather_photos/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

3.划分数据集

train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset
(<torch.utils.data.dataset.Subset at 0x2e2e5516ee0>,
 <torch.utils.data.dataset.Subset at 0x2e2e51cf310>)

train_size, test_size

(900, 225)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                      batch_size = batch_size,
                                      shuffle = True,
                                      num_workers = 1)

test_dl = torch.utils.data.DataLoader(test_dataset,
                                     batch_size = batch_size,
                                     shuffle = True,
                                     num_workers = 1)
for X, y in test_dl:
    print('Shape of X [N, C, H, W]', X.shape) # 
    print('Shape of y: ', y.shape, y.dtype)
    
    break
Shape of X [N, C, H, W] torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

二、构建简单的CNN网络

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool1 = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.pool2 = nn.MaxPool2d(2,2)
        self.fc1 = nn.Linear(24*50*50, len(classNames))
        
    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool1(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool2(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)
        
        return x
    
device = 'cuda' if torch.cuda.is_available else 'cpu'
print('使用 {}'.format(device))

model = Network_bn().to(device)
model
使用 cuda
Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (fc1): Linear(in_features=60000, out_features=4, bias=True)
)

三、训练模型

1.设置超参数

loss_fn = nn.CrossEntropyLoss() # 损失函数
learn_rate = 1e-4
opt = torch.optim.SGD(model.parameters(), lr = learn_rate)

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset) # 训练集大小
    num_batches = len(dataloader) # 训练批次
    
    train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
    
    for X, y in dataloader: # 获取图片及其label
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X) # 网络输出
        loss = loss_fn(pred, y) # 计算预测值和实际值差距,两者差值为损失loss
        
        # 反向传播
        optimizer.zero_grad() # grad(梯度)属性归零
        loss.backward() # 反向传播
        optimizer.step() # 每一步自动更新
        
        # 记录acc与loss
        train_acc = train_acc + (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss = train_loss + loss.item()
        
    train_acc = train_acc / size
    train_loss = train_loss / num_batches
    
    return train_acc, train_loss
        

3.编写测试函数

# 测试循环
def test(dataloader, model, loss_fn):
    size =len(dataloader.dataset)
    num_batches = len(dataloader)
    
    test_loss, test_acc = 0, 0
    
    with torch.no_grad(): # 当不进行训练时,停止梯度更新,节省内存
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)
            
            test_loss = test_loss + loss.item()
            test_acc = test_acc + (target_pred.argmax(1) == target).type(torch.float).sum().item()
            
    test_acc /= size
    test_loss /= num_batches
    
    return test_acc, test_loss

4.正式训练

epochs     = 30
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:58.9%, Train_loss:1.031, Test_acc:56.4%,Test_loss:1.074
Epoch: 2, Train_acc:79.3%, Train_loss:0.684, Test_acc:76.0%,Test_loss:0.775
Epoch: 3, Train_acc:83.2%, Train_loss:0.557, Test_acc:77.8%,Test_loss:0.640
Epoch: 4, Train_acc:85.2%, Train_loss:0.493, Test_acc:80.4%,Test_loss:0.514
Epoch: 5, Train_acc:87.3%, Train_loss:0.454, Test_acc:80.9%,Test_loss:0.491
Epoch: 6, Train_acc:87.7%, Train_loss:0.409, Test_acc:82.7%,Test_loss:0.469
Epoch: 7, Train_acc:87.4%, Train_loss:0.389, Test_acc:83.6%,Test_loss:0.583
Epoch: 8, Train_acc:90.2%, Train_loss:0.361, Test_acc:84.4%,Test_loss:0.411
Epoch: 9, Train_acc:91.3%, Train_loss:0.329, Test_acc:84.0%,Test_loss:0.431
Epoch:10, Train_acc:91.8%, Train_loss:0.297, Test_acc:88.4%,Test_loss:0.796
Epoch:11, Train_acc:92.8%, Train_loss:0.287, Test_acc:90.2%,Test_loss:0.316
Epoch:12, Train_acc:92.2%, Train_loss:0.289, Test_acc:85.8%,Test_loss:0.323
Epoch:13, Train_acc:92.2%, Train_loss:0.276, Test_acc:89.8%,Test_loss:0.310
Epoch:14, Train_acc:93.4%, Train_loss:0.271, Test_acc:90.7%,Test_loss:0.305
Epoch:15, Train_acc:92.8%, Train_loss:0.246, Test_acc:90.2%,Test_loss:0.299
Epoch:16, Train_acc:93.3%, Train_loss:0.235, Test_acc:88.0%,Test_loss:0.319
Epoch:17, Train_acc:93.6%, Train_loss:0.255, Test_acc:89.8%,Test_loss:0.277
Epoch:18, Train_acc:92.3%, Train_loss:0.237, Test_acc:89.8%,Test_loss:0.281
Epoch:19, Train_acc:93.3%, Train_loss:0.248, Test_acc:90.7%,Test_loss:0.285
Epoch:20, Train_acc:94.6%, Train_loss:0.222, Test_acc:89.8%,Test_loss:0.427
Epoch:21, Train_acc:94.4%, Train_loss:0.202, Test_acc:89.8%,Test_loss:0.272
Epoch:22, Train_acc:94.6%, Train_loss:0.206, Test_acc:90.2%,Test_loss:0.292
Epoch:23, Train_acc:95.0%, Train_loss:0.194, Test_acc:84.9%,Test_loss:0.302
Epoch:24, Train_acc:94.1%, Train_loss:0.197, Test_acc:89.3%,Test_loss:0.322
Epoch:25, Train_acc:94.4%, Train_loss:0.192, Test_acc:90.2%,Test_loss:0.259
Epoch:26, Train_acc:94.8%, Train_loss:0.192, Test_acc:91.6%,Test_loss:0.263
Epoch:27, Train_acc:96.2%, Train_loss:0.165, Test_acc:90.7%,Test_loss:0.253
Epoch:28, Train_acc:96.2%, Train_loss:0.166, Test_acc:90.7%,Test_loss:0.263
Epoch:29, Train_acc:95.0%, Train_loss:0.186, Test_acc:91.1%,Test_loss:0.265
Epoch:30, Train_acc:96.0%, Train_loss:0.159, Test_acc:90.2%,Test_loss:0.289
Done

四、结果可视化

import matplotlib.pyplot as plt
import warnings # 隐藏警告

warnings.filterwarnings('ignore') # 忽略warning
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示正负号
plt.rcParams['figure.dpi'] = 100 # 分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

在这里插入图片描述

五、总结

nn.BatchNorm2d() 在卷积层之后将数据规范到均值为0,方差为1的分布上,一方面使得数据分布一致,另一方面避免梯度消失。
	num_features 参数是输入bn层的通道数
  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值