模型轻量化中的量化(Quantization)——二值化和三值化

模型轻量化中的量化(Quantization)——二值化和三值化详解

目录

  1. 简介
  2. 二值化和三值化的基本概念
  3. 二值化和三值化的数学基础
  4. 二值化和三值化的步骤
  5. 二值化和三值化的方法
  6. 二值化和三值化的优缺点
  7. 二值化和三值化的应用实例
  8. 代码示例
  9. 总结

简介

随着深度学习模型的规模和复杂度不断增加,模型在存储和计算上的需求也急剧上升,给实际应用尤其是资源受限的设备(如移动设备、嵌入式系统等)带来了巨大的挑战。量化(Quantization)作为一种有效的模型轻量化技术,通过将模型的高精度参数和激活值转换为低精度表示,显著减少模型的存储空间和计算量。其中,二值化和三值化是极端的量化方法,分别将权重和激活值限制为两种或三种可能的值,从而实现更高的压缩率和计算效率。本文将详细介绍二值化和三值化的基本概念、数学基础、具体步骤和方法,并通过代码示例展示其实现过程。

二值化和三值化的基本概念

二值化(Binary Quantization)

二值化是一种极端的量化方法,将模型的权重和激活值限制为两个可能的值,通常为 − 1 -1 1 + 1 +1 +1 0 0 0 1 1 1。这种方法可以大幅减少模型的存储需求,并且在硬件实现上具有显著的计算优势,因为二值化的运算可以使用位运算代替浮点运算。

三值化(Ternary Quantization)

三值化将模型的权重和激活值限制为三个可能的值,通常为 − 1 -1 1 0 0 0 + 1 +1 +1。相比于二值化,三值化在保持一定的模型性能的同时,仍然能够显著减少存储和计算需求。三值化在表达能力上优于二值化,能够更好地捕捉权重的微妙变化。

二值化和三值化的数学基础

二值化的数学表达

假设模型的权重为 W W W,二值化的目标是将 W W W 转换为二值权重 W b W_b Wb,其中:

W b = sign ( W ) W_b = \text{sign}(W) Wb=sign(W)

其中, sign ( ⋅ ) \text{sign}(\cdot) sign() 是符号函数,定义为:

sign ( x ) = { 1 if  x ≥ 0 − 1 if  x < 0 \text{sign}(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ -1 & \text{if } x < 0 \end{cases} sign(x)={ 11if x0if x<0

三值化的数学表达

三值化的目标是将权重 W W W 转换为三值权重 W t W_t Wt,其中:

W t = { 1 if  W > Δ 0 if  ∣ W ∣ ≤ Δ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值