深度学习超分辨率算法——SwinIR方法

目录

  1. 引言
  2. SwinIR 的核心思路
  3. 网络结构与数学表达
    1. Swin Transformer 的基础
    2. SwinIR 主体结构
    3. 窗口多头自注意力(Window Multi-Head Self-Attention)
    4. 残差与跳跃连接
  4. 损失函数
    1. 像素损失(Pixel Loss)
    2. 感知损失(Perceptual Loss)
    3. 其他可选损失(如对抗损失)
    4. 总体损失
  5. 训练流程
  6. SwinIR 与传统卷积式/Transformer SR 的区别
  7. 详细数学公式说明
  8. 代码示例
  9. 代码简要解读

引言

在图像超分辨率(Super-Resolution, SR)任务中,Transformer 架构因其全局注意力特性被广泛关注。相比传统 CNN 超分模型,基于自注意力的网络在捕捉长距离依赖和复杂纹理关系方面更具优势。SwinIR 则将 Swin Transformer(一种分层、局部注意力的 Transformer 变体)引入超分任务,通过“窗口级”自注意力提升计算效率,同时保持对局部+全局信息的良好建模能力。


SwinIR 的核心思路

  1. Swin Transformer 结构
    • 将图像划分为非重叠的固定大小“窗口”,在各窗口内进行多头自注意力计算;
    • 通过移位窗口(shifted window)机制使不同块之间的信息交互;
    • 分层结构,从低分辨率特征到更高层次特征逐步提炼。
  2. 多阶段残差框架
    • 在 SwinIR 中,Swin Transformer Blocks 与跳跃连接结合,让深度网络在恢复高频细节时更具稳定性。
  3. 像素 Shuffle 或反卷积做上采样
    • 最后阶段将特征还原到高分辨率大小。
  4. 多种图像重建任务统一
    • 可同时在 SR、去噪等任务上取得高品质结果,展现强泛化能力。

网络结构与数学表达

Swin Transformer 的基础

Swin Transformer 是一种分层(hierarchical) Transformer,对输入图像特征按窗口(window)划分进行局部自注意力,减少计算量。

  • 在每个阶段,都把输入特征图分割成非重叠窗口 (如 7×7),并在这些窗口内做多头自注意力;
  • 交替采用移位窗口(Shifted Window)策略,使相邻窗口之间能互相交互信息。

SwinIR 主体结构

SwinIR 通常包含下列模块:

  1. 浅层特征提取:对低分辨率图像做一次或几次卷积提取初步特征;
  2. Swin Transformer Blocks:堆叠若干层Swin Transformer,在窗口内进行自注意力;
  3. 跳跃连接(long skip connection):将浅层特征与深层输出相加,类似 EDSR 的残差结构;
  4. 上采样:如使用像素 Shuffle(PixelShuffle)或反卷积,将特征放大到目标分辨率;
  5. 输出卷积:映射到 3 通道 (RGB) 获得最终 I ^ SR \hat{I}_{\text{SR}} I^SR

窗口多头自注意力(Window Multi-Head Self-Attention)

Swin Transformer中,假设特征图被分成 H M × W M \frac{H}{M}\times \frac{W}{M} MH×MW 个窗口(每窗口大小为 M × M M\times M M×M);

  • 对每个窗口内的 tokens(像素向量)做多头自注意力
    Attn ( Q , K , V ) = softmax ( Q K T d h ) V , \text{Attn}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax}\Bigl(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_h}}\Bigr)\mathbf{V}, Attn(Q,K,V)=softmax(dh QKT)V,
    其中 Q , K , V \mathbf{Q}, \mathbf{K}, \mathbf{V} Q,K,V 是窗口内 tokens 的投影, d h d_h dh 为单个头的维度。
  • 移位窗口:在下一个 Swin Block 中,窗口起始位置会偏移一部分,使得先前窗口边缘像素能与相邻窗口像素同处一个窗口,从而实现全局信息交互。

残差与跳跃连接

SwinIR 在网络整体和每个 Transformer block 内都引入残差

  • 每个 Swin Block: x l + 1 = x l + SwinBlock ( x l ) \mathbf{x}_{l+1} = \mathbf{x}_l + \text{SwinBlock}(\mathbf{x}_l) xl+1=xl+SwinBlock(xl);
  • 整体网络也可能用global residual
    F out = F in + H ( F in ) , F_{\text{out}} = F_{\text{in}} + \mathcal{H}(F_{\text{in}}), Fout=Fin+H(Fin),
    提升收敛与高频信息还原能力。

损失函数

像素损失(Pixel Loss)

L pix = ∥ I ^ SR − I HR ∥ _ 1 或 ℓ 2 , \mathcal{L}_{\text{pix}} = \|\hat{I}_{\text{SR}} - I_{\text{HR}}\|\_1 \quad\text{或}\quad \ell_2, Lpix=I^SR

### 回答1: SwinLR网络是一种轻量级的图像分类网络,它基于Swin Transformer构建。该网络由多个Swin Transformer块组成,每个Swin Transformer块内部包含了多个局部窗口交叉的跨通道信息交换,从而可以捕捉更加丰富的特征。同时,SwinLR网络还使用了一种新的局部注意力机制,可以使得网络更加高效。 具体来说,SwinLR网络首先使用一个3x3的卷积层对输入图像进行特征提取,然后将特征图分成多个小块,并对每个小块进行多次局部窗口交叉的跨通道信息交换,从而捕捉更加丰富的特征。接着,网络使用一种基于Local Relation Transformer的局部注意力机制,对每个小块内的特征进行加权融合,从而得到每个小块的表示。最后,网络使用一个全局池化层将所有小块的表示进行平均,得到整张图像的特征表示,用于分类任务。 总的来说,SwinLR网络的结构比较简单,但通过局部窗口交叉的跨通道信息交换和局部注意力机制的使用,可以在保证高效的同时,捕捉更加丰富的特征,达到较好的分类效果。 ### 回答2: Swinlr网络是一种结构复杂的神经网络模型,由于其创新的设计和出色的性能,逐渐在计算机视觉领域引起了广泛关注。下面我将详细介绍一下Swinlr网络的结构。 Swinlr网络的整体结构由四个关键模块组成,分别是Patch Extraction、Shifted Window、Local-to-Global和Radix-Mix。首先,Patch Extraction模块负责将输入图像分解为一系列重叠的固定大小的图像块。然后,Shifted Window模块引入平移操作,用以增加网络对全局信息的感知能力,每个窗口在网络中以不同的相对位置进行处理。Local-to-Global模块利用深度可分离卷积和重组跨层连接机制,从局部信息逐渐获取全局信息,实现了远程信息的传播。最后,Radix-Mix模块以低维度的矩阵变换方式构建混合感知场域,使得网络在低计算和内存开销下能够具备较大感受野,提升了感受野范围。 Swinlr网络的特点之一是其去中心度,每个阶段中的块都是去中心化的,注重多个窗口的位置和相对位置之间的动态关系。这样的设计使得网络能够有更好的感受野和位置信息的抓取能力。 此外,Swinlr网络还采用了分阶段的训练策略和充分利用了跨阶段的连接,帮助网络充分利用不同尺度上的信息。 总结来说,Swinlr网络通过Patch Extraction、Shifted Window、Local-to-Global和Radix-Mix等关键模块的结合,实现了对不同尺度下的全局信息的感知和利用,具备了较大的感受野和更好的位置信息的抓取能力。这种创新设计使得Swinlr网络在计算机视觉任务中表现出色,成为了当今领域的研究热点之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值