大语言模型——自检与自反(Self-Check / Self-Reflect)详解

引言

在传统的大语言模型推理中,模型给出一次性答案(One-Shot Answer)后就结束。然而,对于多步推理复杂逻辑,模型常因内在的幻觉或知识缺陷而产出错误。为此,人们提出自检(Self-Check)自反(Self-Reflect)的方法,让模型在输出初稿后再次审视自己的思维链和答案,找到可能的错误并进行修正。这一过程类似于人类在解题后的“复查”、或在写作后的“审稿”环节,可大幅提升大语言模型在复杂任务上的可靠度和可解释性。


基本概念与动机

  1. 自检(Self-Check)

    • 当模型完成初次回答后,再次让模型检查其回答及推理过程;
    • 如果发现逻辑矛盾、计算错误等,就在新一轮输出中改正;
    • 目标:在保持快速生成的前提下,获得额外纠错机会。
  2. 自反(Self-Reflect)

    • 让模型充当“批评者/审阅者”角色,深度审视自己的推理步骤与结论;
    • 可能在逻辑结构上作再次组织或调整;
    • 常见提示示例:“请你像一名审稿人一样,阅读并指出现有答案的错误或改进点”。
  3. 动机

    • 减少大语言模型“一次性”回答可能带来的错误;
    • 利用大语言模型在大段上下文中“阅读自身输出、并进一步推理”的能力,通过迭代来提高准确度。

自检与自反的多阶段推理框架

1. 定义与符号

为更好地刻画自检与自反的过程,引入如下符号:

  • Q Q Q:问题或输入(可以是自然语言问题、指令等);
  • Y ( t ) Y^{(t)} Y(t):模型在第 t t t阶段的输出,常含有思维链 C ( t ) C^{(t)} C(t) 和答案 A ( t ) A^{(t)} A(t)
    Y ( t ) = ( C ( t ) , A ( t ) ) Y^{(t)} = (C^{(t)}, A^{(t)}) Y(t)=(C(t),A(t))
  • Θ \Theta Θ:大语言模型的参数(在应用时通常固定)。

在自检与自反流程中,模型不止生成一次输出,而是可以进行多轮迭代 ( t = 1 , 2 , … , T ) (t = 1, 2, \dots, T) (t=1,2,,T)

2. 自检(Self-Check)过程

最简单的自检通常只进行一次后验检查

  1. 初次回答
    Y ( 1 ) = arg ⁡ max ⁡ Y P Θ ( Y ∣ Q ) . Y^{(1)} = \arg \max_{Y} P_\Theta\bigl(Y \mid Q\bigr). Y(1)=argYmaxPΘ(YQ).
    这一步就是模型常规地回答问题。

  2. 检查与修正
    Q Q Q Y ( 1 ) Y^{(1)} Y(1) 及提示文本(例如“请检查前述回答,若有错误请修正”)一起输入模型,让其生成第二个答案:
    Y ( 2 ) = arg ⁡ max

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DuHz

喜欢就支持一下 ~ 谢谢啦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值