基于向量量化的近似矩阵乘法详解
矩阵乘法是科学计算、机器学习和数据分析等领域的基础操作,但随着数据规模的增长,精确矩阵乘法的计算成本变得极为昂贵。基于向量量化的近似矩阵乘法作为一种高效的计算策略,通过对矩阵元素或子矩阵进行量化,显著降低存储需求和计算复杂度,同时保持可接受的精度。
向量量化的数学理论基础
率失真理论与向量量化的最优性
向量量化的理论基础可以追溯到信息论中的率失真理论(Rate-Distortion Theory)。对于给定的源分布 p ( x ) p(x) p(x) 和失真度量 d ( x , x ^ ) d(x,\hat{x}) d(x,x^),率失真函数 R ( D ) R(D) R(D) 定义了在最大失真 D D D 下所需的最小编码率:
R ( D ) = min p ( x ^ ∣ x ) : E [ d ( x , x ^ ) ] ≤ D I ( X ; X ^ ) R(D) = \min_{p(\hat{x}|x): \mathbb{E}[d(x,\hat{x})] \leq D} I(X;\hat{X}) R(D)=p(x^∣x):E[d(x,x^)]≤DminI(X;X^)
其中 I ( X ; X ^ ) I(X;\hat{X}) I(X;X^) 是随机变量 X X X 和 X ^ \hat{X} X^ 之间的互信息。对于均方误差失真 d ( x , x ^ ) = ∥ x − x ^ ∥ 2 d(x,\hat{x}) = \|x-\hat{x}\|^2 d(x,x^)=∥x−x^∥2,高斯源 X ∼ N ( 0 , σ 2 I d ) X \sim \mathcal{N}(0,\sigma^2 I_d) X∼N(0,σ2Id) 的率失真函数为:
R ( D ) = d 2 log ( σ 2 D ) , 0 < D ≤ σ 2 R(D) = \frac{d}{2}\log\left(\frac{\sigma^2}{D}\right), \quad 0 < D \leq \sigma^2 R(D)=2dlog(Dσ2),0<D≤σ2
对于 k k k 比特的向量量化器,其平均码率为 R = k / d R = k/d R=k/d 比特/维度,理论上能达到的最小失真为:
D opt = σ 2 2 − 2 R = σ 2 2 − 2 k / d D_{\text{opt}} = \sigma^2 2^{-2R} = \sigma^2 2^{-2k/d} Dopt=σ22−2R=σ22−2k/d
然而,实际的向量量化器通常无法达到这一理论下界。对于较优的 k k k-means 量化器,在高维空间中的平均失真近似为:
D kmeans ≈ σ 2 G d K − 2 / d D_{\text{kmeans}} \approx \sigma^2 G_d K^{-2/d} Dkmeans≈σ2GdK−2/d
其中 K = 2 k K = 2^k K=2k 是码字数量, G d G_d Gd 是与维度 d d d 相关的常数,对于欧几里得失真, G d ≈ d 2 π e G_d \approx \frac{d}{2\pi e} Gd≈2πed。
量化器设计的变分观点
从变分推断角度看,向量量化器的设计可以视为最小化以下目标函数:
L ( q , C ) = E x ∼ p ( x ) [ min c ∈ C ∥ x − c ∥ 2 ] + λ ⋅ complexity ( C ) \mathcal{L}(q,\mathcal{C}) = \mathbb{E}_{x \sim p(x)}[\min_{c \in \mathcal{C}} \|x-c\|^2] + \lambda \cdot \text{complexity}(\mathcal{C}) L(q,C)=Ex∼p(x)[c∈Cmin∥x−c∥2]+λ⋅complexity(C)
其中 q q q 是量化映射, C \mathcal{C} C 是码本, λ \lambda λ 是权衡参数。这等价于最小化以下变分下界:
L VB ( q , C ) = E x ∼ p ( x ) [ E z ∼ q ( z ∣ x ) [ ∥ x − C ( z ) ∥ 2 ] ] + λ ⋅ K L ( q ( z ∣ x ) ∥ p ( z ) ) \mathcal{L}_{\text{VB}}(q,\mathcal{C}) = \mathbb{E}_{x \sim p(x)}[\mathbb{E}_{z \sim q(z|x)}[\|x-\mathcal{C}(z)\|^2]] + \lambda \cdot KL(q(z|x) \| p(z)) LVB(q,C)=Ex∼p(x)[Ez∼q(z∣x)[∥x−C(z)∥2]]+λ⋅KL(q(z∣x)∥p(z))
其中 z z z 是离散的隐变量,表示码字索引, p ( z ) p(z) p(z) 是先验分布, K L KL KL 是Kullback-Leibler散度。
量化误差的统计分析
向量量化引入的误差可以通过统计扰动理论分析。在均匀量化器下,量化噪声近似服从均匀分布 U ( − Δ / 2 , Δ / 2 ) \mathcal{U}(-\Delta/2, \Delta/2) U(−Δ/2,Δ/2),其中 Δ \Delta Δ 是量化步长。量化噪声的方差为:
σ q 2 = Δ 2 12 \sigma_q^2 = \frac{\Delta^2}{12} σq2=12Δ2
对于复杂的非均匀量化,可以利用Bennett定理分析量化误差,该定理将量化误差的矩与导数信息联系起来:
E [ ∣ x − Q ( x ) ∣ r ] ≈ 1 ( r + 1 ) 2 r ∫ x min x max ∣ Δ ( x ) ∣ r p ( x ) d x \mathbb{E}[|x - Q(x)|^r] \approx \frac{1}{(r+1)2^r} \int_{x_{\text{min}}}^{x_{\text{max}}} |\Delta(x)|^r p(x) dx E[∣x−Q(x)∣r]≈(r+1)2r1∫xminxmax∣Δ(x)∣rp(x)dx
其中 Δ ( x ) \Delta(x) Δ(x) 是 x x x 处的有效量化步长, p ( x ) p(x) p(x) 是数据分布。
向量量化的高斯复杂度理论
对于受限码本大小的量化器设计问题,可以通过引入高斯复杂度理论进行分析。给定训练样本 { x 1 , x 2 , . . . , x n } \{x_1, x_2, ..., x_n\} {x1,x2,...,xn},经验风险最小化问题为:
min q ∈ Q 1 n ∑ i = 1 n ∥ x i − q ( x i ) ∥ 2 \min_{q \in \mathcal{Q}} \frac{1}{n} \sum_{i=1}^n \|x_i - q(x_i)\|^2 q∈Qminn1i=1∑n∥xi−q(xi)∥2
其中 Q \mathcal{Q} Q 是所有可能量化函数的集合。利用Rademacher复杂度,可以建立经验风险和真实风险之间的泛化误差界:
E [ ∥ x − q ( x ) ∥ 2 ] ≤ 1 n ∑ i = 1 n ∥ x i − q ( x i ) ∥ 2 + 2 R n ( Q ) + log ( 1 / δ ) 2 n \mathbb{E}[\|x - q(x)\|^2] \leq \frac{1}{n} \sum_{i=1}^n \|x_i - q(x_i)\|^2 + 2\mathcal{R}_n(\mathcal{Q}) + \sqrt{\frac{\log(1/\delta)}{2n}} E[∥x−q(x)∥2]≤n1i=1∑n∥xi−q(xi)∥2+2Rn(Q)+2nlog(1/δ)
其中 R n ( Q ) \mathcal{R}_n(\mathcal{Q}) Rn(Q) 是量化函数集合的Rademacher复杂度:
R n ( Q ) = E σ [ sup q ∈ Q 1 n ∑ i = 1 n σ i ∥ x i − q ( x i ) ∥ 2 ] \mathcal{R}_n(\mathcal{Q}) = \mathbb{E}_{\sigma}\left[\sup_{q \in \mathcal{Q}} \frac{1}{n} \sum_{i=1}^n \sigma_i \|x_i - q(x_i)\|^2\right] Rn(Q)=Eσ[q∈Qsupn1i=1∑nσi∥xi−q(xi)∥2]
σ i \sigma_i σi 是独立的Rademacher随机变量(均匀取值于 { − 1 , 1 } \{-1, 1\} {−1,1})。
向量量化的基本原理
向量量化(Vector Quantization, VQ)源于信号处理领域,其核心思想是用有限数量的代表性向量(码本)来近似表示大量的原始向量。应用到矩阵乘法中,VQ通过将矩阵中的向量映射到少量代表性向量,从而降低计算复杂度。对于矩阵乘法 C = A B C = AB C=AB,其中 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n, B ∈ R n × p B \in \mathbb{R}^{n \times p} B∈Rn×p,传统算法的计算复杂度为 O ( m n p ) O(mnp) O(mnp)。基于向量量化的方法首先将 A A A 的行向量和 B B B 的列向量量化为有限集合中的代表性向量,然后利用预计算的代表性向量间的乘积快速组装最终结果。
形式上,向量量化可以定义为从连续空间到离散码本的映射:
Q : R d → C = { c 1 , c 2 , . . . , c K } Q: \mathbb{R}^d \rightarrow \mathcal{C} = \{c_1, c_2, ..., c_K\} Q:Rd→C={c1,c2,...,cK}
其中 C \mathcal{C} C 是包含 K K K 个码字的码本, d d d 是向量维度。优化目标是最小化量化误差:
min Q , C ∑ v ∥ v − Q ( v ) ∥ 2 \min_{Q, \mathcal{C}} \sum_v \|v - Q(v)\|^2 Q,Cminv∑∥v−Q(v)∥2
其中 v v v 是原始向量, Q ( v ) Q(v) Q(v) 是其量化后的表示。
在信息论框架下,最优量化器应最大化互信息 I ( V ; Q ( V ) ) I(V; Q(V)) I(V;Q(V)),同时满足码率约束 H ( Q ( V ) ) ≤ R H(Q(V)) \leq R H(Q(V))≤R,其中 H ( ⋅ ) H(\cdot) H(⋅) 是熵, R R R 是目标码率。这等价于以下拉格朗日形式:
min Q E [ ∥ V − Q ( V ) ∥ 2 ] + λ ⋅ H ( Q ( V ) ) \min_{Q} \mathbb{E}[\|V - Q(V)\|^2] + \lambda \cdot H(Q(V)) QminE[∥V−Q(V)∥2]+λ⋅H(Q(V))
其中 λ \lambda λ 是权衡参数。随着 λ \lambda λ 的增加,量化器会牺牲精度以实现更低的码率。
基础量化技术
标量量化与均匀量化
最基本的量化方式是将每个浮点数映射到离散值集合。对于给定范围 [ a , b ] [a, b] [a,b] 内的标量 x x x,均匀量化将其映射为:
Q ( x ) = a + ⌊ x − a b − a ⋅ ( 2 b − 1 ) + 0.5 ⌋ ⋅ b − a 2 b − 1 Q(x) = a + \lfloor \frac{x - a}{b - a} \cdot (2^b - 1) + 0.5 \rfloor \cdot \frac{b - a}{2^b - 1} Q(x)=a+⌊b−ax−a⋅(2b−1)+0.5⌋⋅2b−1b−a
其中 b b b 是量化位数, ⌊ ⋅ ⌋ \lfloor \cdot \rfloor ⌊⋅⌋ 表示向下取整。
将这一概念扩展到矩阵,均匀量化将矩阵 A A A 的每个元素映射到 2 b 2^b 2b 个离散值:
Q ( A ) i j = a + ⌊ A i j − a b − a ⋅ ( 2 b − 1 ) + 0.5 ⌋ ⋅ b − a 2 b − 1 Q(A)_{ij} = a + \lfloor \frac{A_{ij} - a}{b - a} \cdot (2^b - 1) + 0.5 \rfloor \cdot \frac{b - a}{2^b - 1} Q(A)ij=a+⌊b−aAij−a⋅(2b−1)+0.5⌋⋅2b−1b−a
其中 a = min ( A ) a = \min(A) a=min(A), b = max ( A ) b = \max(A) b=max(A)。
逆量化操作(从量化值恢复到浮点数)定义为:
Q − 1 ( y ) = a + y 2 b − 1 ⋅ ( b − a ) Q^{-1}(y) = a + \frac{y}{2^b - 1} \cdot (b - a) Q−1(y)=a+2b−1y⋅(b−a)
量化误差的理论分析表明,均匀量化器在高位率下渐近最优,其失真-率性能近似为:
D ( R ) ≈ ( b − a ) 2 12 ⋅ 2 − 2 R D(R) \approx \frac{(b-a)^2}{12} \cdot 2^{-2R} D(R)≈12(b−a)2⋅2−2R
其中 R R R 是每个标量的平均比特数。
非均匀量化与Lloyd算法
非均匀量化通过根据数据分布调整量化级别,可以更有效地减小量化误差。Lloyd算法(也称为k-means聚类)是一种经典的非均匀量化方法,它迭代地优化码本和量化映射。形式上,Lloyd算法的目标是找到最优的码本 C = { c 1 , c 2 , . . . , c K } \mathcal{C} = \{c_1, c_2, ..., c_K\} C={c1,c2,...,cK} 和量化函数 Q Q Q,使得以下目标函数最小化:
J ( C , Q ) = E x ∼ p ( x ) [ ∥ x − Q ( x ) ∥ 2 ] J(\mathcal{C}, Q) = \mathbb{E}_{x \sim p(x)}[\|x - Q(x)\|^2] J(C,Q)=Ex∼p(x)[∥x−Q(x)∥2]
其中 p ( x ) p(x) p(x) 是数据分布。
这一最优化问题可以通过交替优化两个步骤来求解:
- 最近邻规则(量化步骤):对固定的码本 C \mathcal{C} C,最优的量化函数为:
Q ( x ) = arg min c ∈ C ∥ x − c ∥ 2 Q(x) = \arg\min_{c \in \mathcal{C}} \|x - c\|^2 Q(x)=argc∈Cmin∥x−c∥2
- 质心条件(更新步骤):对固定的量化函数 Q Q Q,最优的码字为对应区域内数据点的条件期望:
c i = E x ∼ p ( x ) [ x ⋅ 1 Q ( x ) = c i ] E x ∼ p ( x ) [ 1 Q ( x ) = c i ] c_i = \frac{\mathbb{E}_{x \sim p(x)}[x \cdot \mathbf{1}_{Q(x)=c_i}]}{\mathbb{E}_{x \sim p(x)}[\mathbf{1}_{Q(x)=c_i}]} ci=Ex∼p(x)[1Q(x)=ci]Ex∼p(x)[x⋅1Q(x)=ci]
其中 1 \mathbf{1} 1 是指示函数。
Lloyd算法的收敛性可以通过证明目标函数 J ( C , Q ) J(\mathcal{C}, Q) J(C,Q) 在每次迭代中单调递减来证明。然而,算法只能保证收敛到局部最优,全局最优通常难以保证。
对于数据分布 p ( x ) p(x) p(x) 服从高斯分布 N ( μ , σ 2 ) \mathcal{N}(\mu, \sigma^2) N(μ,σ2) 的一维情况,最优非均匀量化器的量化点应满足:
∫ r i r i + 1 ( x − c i ) p ( x ) d x = 0 \int_{r_i}^{r_{i+1}} (x - c_i)p(x)dx = 0 ∫riri+1(x−ci)p(x)dx=0
其中 r i r_i ri 是决策边界,满足 r i = c i − 1 + c i 2 r_i = \frac{c_{i-1} + c_i}{2} ri=2ci−1+ci。
Lloyd-Max量化器的高阶分析
对于高维数据,Lloyd-Max量化器的性能受到维度灾难的影响。当维度 d d d 较大时,量化器的平均失真近似为:
D Lloyd-Max ≈ σ 2 ⋅ d ⋅ K − 2 / d ⋅ ( 1 + O ( K − 2 / d ) ) D_{\text{Lloyd-Max}} \approx \sigma^2 \cdot d \cdot K^{-2/d} \cdot \left(1 + O(K^{-2/d})\right) DLloyd-Max≈σ2⋅d⋅K−2/d⋅(1+O(K−2/d))
其中 K K K 是码字数量, σ 2 \sigma^2 σ2 是每维的方差。这表明,当维度增加时,为保持相同的失真水平,码字数量需要指数级增长。
为了更深入地分析数据结构对量化性能的影响,可以引入Fisher信息矩阵 F \mathbf{F} F:
F ( x ) = − E [ ∂ 2 log p ( x ) ∂ x ∂ x T ] \mathbf{F}(x) = -\mathbb{E}\left[\frac{\partial^2 \log p(x)}{\partial x \partial x^T}\right] F(x)=−E[∂x∂xT∂2logp(x)]
在高位率假设下,最优非均匀量化器的点密度应与Fisher信息矩阵的行列式的平方根成正比:
λ ( x ) ∝ ∣ F ( x ) ∣ 1 / 2 \lambda(x) \propto |\mathbf{F}(x)|^{1/2} λ(x)∝∣F(x)∣1/2
这一结果通常被称为高位率量化理论中的"点密度公式"。
乘积量化
乘积量化的数学形式化
乘积量化(Product Quantization, PQ)是向量量化的一种扩展,其核心思想是将高维向量分解为多个低维子向量,然后对每个子向量独立进行量化。这种方法可以指数级地增加有效码本大小,同时保持计算效率。
具体而言,对于 d d d 维向量 v v v,我们首先将其分解为 M M M 个子向量:
v = [ v 1 , v 2 , . . . , v M ] v = [v^1, v^2, ..., v^M] v=[v1,v2,...,vM]
其中每个子向量 v j v^j vj 的维度为 d / M d/M d/M。然后,对每个子空间独立应用向量量化:
Q ( v ) = [ Q 1 ( v 1 ) , Q 2 ( v 2 ) , . . . , Q M ( v M ) ] Q(v) = [Q_1(v^1), Q_2(v^2), ..., Q_M(v^M)] Q(v)=[Q1(v1),Q2(v2),...,QM(vM)]
其中 Q j Q_j Qj 是第 j j j 个子空间的量化器,拥有 K j K_j Kj 个码字。
乘积量化的总码本大小为 K = ∏ j = 1 M K j K = \prod_{j=1}^M K_j K=∏j=1MKj,但我们只需要存储 ∑ j = 1 M K j \sum_{j=1}^M K_j ∑j=1MKj 个子码字,这大大减小了存储需求。
从率失真理论的角度,乘积量化近似于独立地量化每个子向量。如果假设子向量之间统计独立,则乘积量化的率失真性能为:
D PQ ( R ) ≈ ∑ j = 1 M D j ( R j ) D_{\text{PQ}}(R) \approx \sum_{j=1}^M D_j(R_j) DPQ(R)≈j=1∑MDj(Rj)
其中 D j ( R j ) D_j(R_j) Dj(Rj) 是第 j j j 个子空间的率失真函数, R j R_j Rj 是分配给该子空间的码率,且 ∑ j = 1 M R j = R \sum_{j=1}^M R_j = R ∑j=1MRj=R。
当子向量不独立时,乘积量化不再是最优的。采用主成分分析(PCA)等技术对数据进行预处理,可以增强子向量间的独立性,提高性能。
应用于矩阵乘法
在矩阵乘法 C = A B C = AB C=AB 中,我们可以将 A A A 的行向量和 B B B 的列向量表示为乘积量化的形式:
A
i
,
:
≈
[
Q
1
A
(
A
i
,
:
1
)
,
Q
2
A
(
A
i
,
:
2
)
,
.
.
.
,
Q
M
A
(
A
i
,
:
M
)
]
A_{i,:} \approx [Q_1^A(A_{i,:}^1), Q_2^A(A_{i,:}^2), ..., Q_M^A(A_{i,:}^M)]
Ai,:≈[Q1A(Ai,:1),Q2A(Ai,:2),...,QMA(Ai,:M)]
B
:
,
j
≈
[
Q
1
B
(
B
:
,
j
1
)
,
Q
2
B
(
B
:
,
j
2
)
,
.
.
.
,
Q
M
B
(
B
:
,
j
M
)
]
B_{:,j} \approx [Q_1^B(B_{:,j}^1), Q_2^B(B_{:,j}^2), ..., Q_M^B(B_{:,j}^M)]
B:,j≈[Q1B(B:,j1),Q2B(B:,j2),...,QMB(B:,jM)]
矩阵乘法可以近似为:
C i j = A i , : ⋅ B : , j ≈ ∑ k = 1 M Q k A ( A i , : k ) ⋅ Q k B ( B : , j k ) C_{ij} = A_{i,:} \cdot B_{:,j} \approx \sum_{k=1}^M Q_k^A(A_{i,:}^k) \cdot Q_k^B(B_{:,j}^k) Cij=Ai,:⋅B:,j≈k=1∑MQkA(Ai,:k)⋅QkB(B:,jk)
我们可以预计算所有码字组合的内积,存储在查找表中,从而在计算 C i j C_{ij} Cij 时只需进行表查找和简单的加法操作,显著提高计算效率。
对于子空间 k k k,存储的查找表为:
T k [ i ] [ j ] = ( c i A , k ) T ⋅ c j B , k \mathcal{T}_k[i][j] = (c_i^{A,k})^T \cdot c_j^{B,k} Tk[i][j]=(ciA,k)T⋅cjB,k
其中 c i A , k c_i^{A,k} ciA,k 是 A A A 在第 k k k 个子空间的第 i i i 个码字, c j B , k c_j^{B,k} cjB,k 是 B B B 在第 k k k 个子空间的第 j j j 个码字。
乘积量化的理论复杂度与误差分析
乘积量化的时间复杂度显著低于直接矩阵乘法。对于尺寸为 m × n m \times n m×n 和 n × p n \times p n×p 的矩阵乘法,传统算法的复杂度为 O ( m n p ) O(mnp) O(mnp),而使用乘积量化的复杂度为:
O ( m ⋅ p ⋅ M + M ⋅ K A ⋅ K B ) O(m \cdot p \cdot M + M \cdot K_A \cdot K_B) O(m⋅p⋅M+M⋅KA⋅KB)
其中 M M M 是子空间数量, K A K_A KA 和 K B K_B KB 是每个子空间的码字数量。当 M ⋅ K A ⋅ K B ≪ m n p M \cdot K_A \cdot K_B \ll mnp M⋅KA⋅KB≪mnp 时,这种方法可以实现显著的加速。
乘积量化引入的近似误差可以分解为两部分:
∥ C − C ~ ∥ F 2 ≤ ∥ A − A ~ ∥ F 2 ⋅ ∥ B ∥ F 2 + ∥ A ~ ∥ F 2 ⋅ ∥ B − B ~ ∥ F 2 \|C - \tilde{C}\|_F^2 \leq \|A - \tilde{A}\|_F^2 \cdot \|B\|_F^2 + \|\tilde{A}\|_F^2 \cdot \|B - \tilde{B}\|_F^2 ∥C−C~∥F2≤∥A−A~∥F2⋅∥B∥F2+∥A~∥F2⋅∥B−B~∥F2
其中 A ~ \tilde{A} A~ 和 B ~ \tilde{B} B~ 是 A A A 和 B B B 的量化表示, C ~ \tilde{C} C~ 是近似的矩阵乘积。
对于具有 M M M 个子空间、每个子空间使用 K K K 个码字的乘积量化,平均量化误差的理论界为:
E [ ∥ v − Q ( v ) ∥ 2 ] ≤ d M ⋅ ∑ j = 1 M σ j 2 ⋅ K − 2 M / d \mathbb{E}[\|v - Q(v)\|^2] \leq \frac{d}{M} \cdot \sum_{j=1}^M \sigma_j^2 \cdot K^{-2M/d} E[∥v−Q(v)∥2]≤Md⋅j=1∑Mσj2⋅K−2M/d
其中 σ j 2 \sigma_j^2 σj2 是第 j j j 个子空间的数据方差。这表明,增加子空间数量 M M M 或每个子空间的码字数量 K K K 都可以降低量化误差。
最优子空间划分策略
子空间的划分策略对乘积量化的性能有重要影响。最简单的是均匀划分,即每个子空间包含相同数量的维度。然而,如果数据维度之间存在不均匀的相关性或重要性,非均匀划分可能更优。
形式上,最优的子空间划分问题可表述为:
min { S 1 , S 2 , . . . , S M } ∑ j = 1 M E v ∼ p ( v ) [ ∥ v S j − Q j ( v S j ) ∥ 2 ] \min_{\{S_1, S_2, ..., S_M\}} \sum_{j=1}^M \mathbb{E}_{v \sim p(v)}[\|v_{S_j} - Q_j(v_{S_j})\|^2] {S1,S2,...,SM}minj=1∑MEv∼p(v)[∥vSj−Qj(vSj)∥2]
其中 { S 1 , S 2 , . . . , S M } \{S_1, S_2, ..., S_M\} {S1,S2,...,SM} 是维度集合的划分, v S j v_{S_j} vSj 表示向量 v v v 在子集 S j S_j Sj 上的投影。
该问题是NP-难的,但可以通过贪心算法或动态规划获得近似解。一种实用的策略是基于数据协方差矩阵进行子空间划分,使得每个子空间内维度高度相关,而不同子空间间的相关性较低。
对于协方差矩阵 Σ \Sigma Σ,可以使用谱聚类(Spectral Clustering)方法将维度划分为 M M M 个子集,优化以下目标:
min { S 1 , S 2 , . . . , S M } ∑ j = 1 M ∑ i , i ′ ∈ S j Σ i , i ′ ∑ i ∈ S j , i ′ ∈ S j ′ Σ i , i ′ \min_{\{S_1, S_2, ..., S_M\}} \sum_{j=1}^M \frac{\sum_{i,i' \in S_j} \Sigma_{i,i'}}{\sum_{i \in S_j, i' \in S_j'} \Sigma_{i,i'}} {S1,S2,...,SM}minj=1∑M∑i∈Sj,i′∈Sj′Σi,i′∑i,i′∈SjΣi,i′
这一优化鼓励子空间内高协方差,同时最小化子空间间的协方差。
残差量化
残差量化的数学形式与递归结构
残差量化(Residual Quantization, RQ)是一种迭代的量化方法,它通过多级量化逐步细化表示精度。基本过程如下:
- 对原始向量 v v v 进行初始量化: q 1 = Q 1 ( v ) q_1 = Q_1(v) q1=Q1(v)
- 计算残差: r 1 = v − q 1 r_1 = v - q_1 r1=v−q1
- 对残差进行量化: q 2 = Q 2 ( r 1 ) q_2 = Q_2(r_1) q2=Q2(r1)
- 计算新的残差: r 2 = r 1 − q 2 r_2 = r_1 - q_2 r2=r1−q2
- 重复步骤3和4多次
最终,向量 v v v 的量化表示为:
Q ( v ) = q 1 + q 2 + . . . + q L Q(v) = q_1 + q_2 + ... + q_L Q(v)=q1+q2+...+qL
其中 L L L 是残差量化的级数。
从信息论角度,残差量化可以视为逐级解码的过程,每一级提供额外的信息来细化表示。如果每级量化器使用 K K K 个码字,则总码本大小为 K L K^L KL,但存储成本只有 L ⋅ K L \cdot K L⋅K。
残差量化的递归结构可以表述为:
r
0
=
v
r_0 = v
r0=v
q
l
=
Q
l
(
r
l
−
1
)
,
l
=
1
,
2
,
.
.
.
,
L
q_l = Q_l(r_{l-1}), \quad l = 1, 2, ..., L
ql=Ql(rl−1),l=1,2,...,L
r
l
=
r
l
−
1
−
q
l
,
l
=
1
,
2
,
.
.
.
,
L
r_l = r_{l-1} - q_l, \quad l = 1, 2, ..., L
rl=rl−1−ql,l=1,2,...,L
Q
(
v
)
=
∑
l
=
1
L
q
l
Q(v) = \sum_{l=1}^L q_l
Q(v)=l=1∑Lql
理论上,如果每级量化器 Q l Q_l Ql 都是最优的,随着 L L L 的增加,残差 r L r_L rL 的范数将呈指数衰减:
∥ r L ∥ 2 ≈ ∥ v ∥ 2 ⋅ ∏ l = 1 L ( 1 − K d ) \|r_L\|^2 \approx \|v\|^2 \cdot \prod_{l=1}^L (1 - \frac{K}{d}) ∥rL∥2≈∥v∥2⋅l=1∏L(1−dK)
这表明残差量化可以通过足够多的级数 L L L 实现任意精度的近似。
多层次残差量化策略
在实践中,不同级别的残差可能具有不同的统计特性,因此每级量化器可以专门设计以适应相应的残差分布。这导致了多层次残差量化策略:
- 前几级使用较大的码本,捕获主要结构
- 中间级别使用中等大小的码本,捕获中等尺度的细节
- 后几级使用较小的码本,捕获细微变化
形式上,第 l l l 级的量化器 Q l Q_l Ql 可以设计为最小化条件残差:
Q l = arg min Q E r l − 1 [ ∥ r l − 1 − Q ( r l − 1 ) ∥ 2 ] Q_l = \arg\min_{Q} \mathbb{E}_{r_{l-1}}[\|r_{l-1} - Q(r_{l-1})\|^2] Ql=argQminErl−1[∥rl−1−Q(rl−1)∥2]
其中期望是关于条件分布 p ( r l − 1 ∣ q 1 , q 2 , . . . , q l − 1 ) p(r_{l-1}|q_1, q_2, ..., q_{l-1}) p(rl−1∣q1,q2,...,ql−1) 计算的。
一种实用的方法是使用自适应的码本大小,根据每级残差的方差来分配码字数量:
K l ∝ Var ( r l − 1 ) K_l \propto \sqrt{\text{Var}(r_{l-1})} Kl∝Var(rl−1)
这种分配策略在总码字数量固定的情况下,可以最小化总体量化误差。
应用于矩阵乘法
在矩阵乘法中,我们可以将 A A A 和 B B B 分别表示为残差量化的形式:
A
≈
A
(
1
)
+
A
(
2
)
+
.
.
.
+
A
(
L
)
A \approx A^{(1)} + A^{(2)} + ... + A^{(L)}
A≈A(1)+A(2)+...+A(L)
B
≈
B
(
1
)
+
B
(
2
)
+
.
.
.
+
B
(
L
)
B \approx B^{(1)} + B^{(2)} + ... + B^{(L)}
B≈B(1)+B(2)+...+B(L)
其中 A ( l ) A^{(l)} A(l) 和 B ( l ) B^{(l)} B(l) 是第 l l l 级量化表示。矩阵乘法可以近似为:
C = A B ≈ ∑ i = 1 L ∑ j = 1 L A ( i ) B ( j ) C = AB \approx \sum_{i=1}^L \sum_{j=1}^L A^{(i)} B^{(j)} C=AB≈i=1∑Lj=1∑LA(i)B(j)
这涉及 L 2 L^2 L2 个子矩阵乘法,但每个子矩阵都具有简单的结构,可以高效计算。实际上,可以采用渐进式计算策略,首先使用低级量化计算粗略结果,然后逐步细化:
C
(
1
)
=
A
(
1
)
B
(
1
)
C^{(1)} = A^{(1)} B^{(1)}
C(1)=A(1)B(1)
C
(
2
)
=
C
(
1
)
+
A
(
1
)
B
(
2
)
+
A
(
2
)
B
(
1
)
+
A
(
2
)
B
(
2
)
C^{(2)} = C^{(1)} + A^{(1)} B^{(2)} + A^{(2)} B^{(1)} + A^{(2)} B^{(2)}
C(2)=C(1)+A(1)B(2)+A(2)B(1)+A(2)B(2)
.
.
.
...
...
这种方法的计算复杂度为 O ( L 2 ⋅ m p + L ⋅ K A ⋅ K B ) O(L^2 \cdot mp + L \cdot K_A \cdot K_B) O(L2⋅mp+L⋅KA⋅KB),其中 K A K_A KA 和 K B K_B KB 是每级量化器的平均码字数量。
残差量化的一个关键优势是可以通过控制计算的级数 L ′ L' L′ ( L ′ ≤ L L' \leq L L′≤L)来实现计算精度和效率的权衡。对于不同的应用场景,可以选择不同的计算级数:
C ≈ ∑ i = 1 L ′ ∑ j = 1 L ′ A ( i ) B ( j ) C \approx \sum_{i=1}^{L'} \sum_{j=1}^{L'} A^{(i)} B^{(j)} C≈i=1∑L′j=1∑L′A(i)B(j)
残差量化的Kolmogorov复杂度分析
从算法信息论角度,残差量化可以视为信息的渐进式编码。如果每级残差的Kolmogorov复杂度(描述残差所需的最小程序长度)为 K ( r l ) K(r_l) K(rl),那么总的编码长度为:
K ( v ) ≈ ∑ l = 1 L K ( q l ) ≈ ∑ l = 1 L log K l K(v) \approx \sum_{l=1}^L K(q_l) \approx \sum_{l=1}^L \log K_l K(v)≈l=1∑LK(ql)≈l=1∑LlogKl
其中 K l K_l Kl 是第 l l l 级量化器的码字数量。
当残差呈现自相似性或分形结构时,残差量化特别高效,因为后续级别的残差可以用与前几级类似的编码方式表示,降低了整体的Kolmogorov复杂度。
加性量化与复合量化
加性量化的表示学习观点
加性量化(Additive Quantization, AQ)是乘积量化和残差量化的泛化,它将向量表示为多个码本中码字的和:
Q ( v ) = ∑ j = 1 M c j , c j ∈ C j Q(v) = \sum_{j=1}^M c_j, \quad c_j \in \mathcal{C}_j Q(v)=j=1∑Mcj,cj∈Cj
其中 C j \mathcal{C}_j Cj 是第 j j j 个码本。
从表示学习角度,加性量化可以视为在 M M M 个子空间中学习向量的最优表示。每个子空间由一组基向量(码字)张成,目标是找到这些子空间的最优基和坐标,使得重构误差最小。
形式上,加性量化的优化目标是:
min { C j } j = 1 M , { c j } j = 1 M ∑ v ∈ D ∥ v − ∑ j = 1 M c j ∥ 2 , c j ∈ C j \min_{\{\mathcal{C}_j\}_{j=1}^M, \{c_j\}_{j=1}^M} \sum_{v \in \mathcal{D}} \|v - \sum_{j=1}^M c_j\|^2, \quad c_j \in \mathcal{C}_j {Cj}j=1M,{cj}j=1Mminv∈D∑∥v−j=1∑Mcj∥2,cj∈Cj
其中 D \mathcal{D} D 是训练数据集。这是一个组合优化问题,通常通过迭代优化算法求解:
- 码本优化:固定码字选择 { c j } \{c_j\} {cj},优化码本 { C j } \{\mathcal{C}_j\} {Cj}
- 码字选择:固定码本 { C j } \{\mathcal{C}_j\} {Cj},优化码字选择 { c j } \{c_j\} {cj}
码字选择步骤特别具有挑战性,因为需要在指数级大小的组合空间中搜索。常用的近似算法包括贪心搜索、交替方向乘子法(ADMM)和集束搜索(Beam Search)等。
对于高维数据,加性量化的理论性能优于乘积量化,特别是当数据的相关性结构复杂时。存在常数 C C C 使得:
E [ ∥ v − Q A Q ( v ) ∥ 2 ] ≤ C ⋅ E [ ∥ v − Q P Q ( v ) ∥ 2 ] \mathbb{E}[\|v - Q_{AQ}(v)\|^2] \leq C \cdot \mathbb{E}[\|v - Q_{PQ}(v)\|^2] E[∥v−QAQ(v)∥2]≤C⋅E[∥v−QPQ(v)∥2]
其中 C < 1 C < 1 C<1 表示加性量化的优势。
复合量化与正交约束
复合量化(Composite Quantization, CQ)进一步推广了加性量化的思想,它引入了一个额外的约束,要求不同码本的码字之间的内积接近于常数:
∑ i ≠ j c i T c j ≈ const , c i ∈ C i , c j ∈ C j \sum_{i \neq j} c_i^T c_j \approx \text{const}, \quad c_i \in \mathcal{C}_i, c_j \in \mathcal{C}_j i=j∑ciTcj≈const,ci∈Ci,cj∈Cj
这一约束使得向量的近似范数可以更容易计算,从而加速后续的距离计算或相似性搜索。
复合量化的优化目标包含一个额外的正则化项:
min { C j } j = 1 M , { c j } j = 1 M ∑ v ∈ D ∥ v − ∑ j = 1 M c j ∥ 2 + λ ∑ v ∈ D ( ∑ i ≠ j c i T c j − ξ ) 2 , c j ∈ C j \min_{\{\mathcal{C}_j\}_{j=1}^M, \{c_j\}_{j=1}^M} \sum_{v \in \mathcal{D}} \|v - \sum_{j=1}^M c_j\|^2 + \lambda \sum_{v \in \mathcal{D}} \left(\sum_{i \neq j} c_i^T c_j - \xi\right)^2, \quad c_j \in \mathcal{C}_j {Cj}j=1M,{cj}j=1Mminv∈D∑∥v−j=1∑Mcj∥2+λv∈D∑ i=j∑ciTcj−ξ 2,cj∈Cj
其中 λ \lambda λ 是权衡参数, ξ \xi ξ 是目标常数。
正交约束可以进一步增强,要求不同码本的码字相互正交:
c i T c j = 0 , ∀ i ≠ j , c i ∈ C i , c j ∈ C j c_i^T c_j = 0, \quad \forall i \neq j, c_i \in \mathcal{C}_i, c_j \in \mathcal{C}_j ciTcj=0,∀i=j,ci∈Ci,cj∈Cj
这导致了正交加性量化(Orthogonal Additive Quantization, OAQ),其优化目标为:
min { C j } j = 1 M , { c j } j = 1 M ∑ v ∈ D ∥ v − ∑ j = 1 M c j ∥ 2 , c j ∈ C j , c i T c j = 0 , ∀ i ≠ j \min_{\{\mathcal{C}_j\}_{j=1}^M, \{c_j\}_{j=1}^M} \sum_{v \in \mathcal{D}} \|v - \sum_{j=1}^M c_j\|^2, \quad c_j \in \mathcal{C}_j, \quad c_i^T c_j = 0, \forall i \neq j {Cj}j=1M,{cj}j=1Mminv∈D∑∥v−j=1∑Mcj∥2,cj∈Cj,ciTcj=0,∀i=j
这一约束简化了距离计算,使得欧几里得距离可以分解为各个子空间中的距离之和:
∥ v − Q ( v ) ∥ 2 = ∥ v ∥ 2 − 2 ∑ j = 1 M v T c j + ∑ j = 1 M ∥ c j ∥ 2 \|v - Q(v)\|^2 = \|v\|^2 - 2\sum_{j=1}^M v^T c_j + \sum_{j=1}^M \|c_j\|^2 ∥v−Q(v)∥2=∥v∥2−2j=1∑MvTcj+j=1∑M∥cj∥2
当正交约束满足时,交叉项消失,简化为:
∥ v − Q ( v ) ∥ 2 = ∥ v ∥ 2 − 2 ∑ j = 1 M v T c j + ∑ j = 1 M ∥ c j ∥ 2 \|v - Q(v)\|^2 = \|v\|^2 - 2\sum_{j=1}^M v^T c_j + \sum_{j=1}^M \|c_j\|^2 ∥v−Q(v)∥2=∥v∥2−2j=1∑MvTcj+j=1∑M∥cj∥2
应用于矩阵乘法的张量分解视角
从张量分解角度看,基于加性量化的矩阵乘法可以视为特殊形式的Tucker分解。设 A A A 和 B B B 分别表示为:
A
i
,
:
≈
∑
j
=
1
M
c
j
A
,
c
j
A
∈
C
j
A
A_{i,:} \approx \sum_{j=1}^M c_j^A, \quad c_j^A \in \mathcal{C}_j^A
Ai,:≈j=1∑McjA,cjA∈CjA
B
:
,
k
≈
∑
l
=
1
N
c
l
B
,
c
l
B
∈
C
l
B
B_{:,k} \approx \sum_{l=1}^N c_l^B, \quad c_l^B \in \mathcal{C}_l^B
B:,k≈l=1∑NclB,clB∈ClB
则矩阵乘法可以表示为:
C i k = A i , : ⋅ B : , k ≈ ∑ j = 1 M ∑ l = 1 N ( c j A ) T c l B C_{ik} = A_{i,:} \cdot B_{:,k} \approx \sum_{j=1}^M \sum_{l=1}^N (c_j^A)^T c_l^B Cik=Ai,:⋅B:,k≈j=1∑Ml=1∑N(cjA)TclB
这等价于秩为 ( M , N ) (M, N) (M,N) 的Tucker分解:
C ≈ ∑ j = 1 M ∑ l = 1 N G j l U j V l T C \approx \sum_{j=1}^M \sum_{l=1}^N \mathcal{G}_{jl} U_j V_l^T C≈j=1∑Ml=1∑NGjlUjVlT
其中 G j l = ( c j A ) T c l B \mathcal{G}_{jl} = (c_j^A)^T c_l^B Gjl=(cjA)TclB 是核张量, U j U_j Uj 和 V l V_l Vl 是单位向量。
当复合量化的内积约束满足时,计算可以进一步简化:
C i k ≈ ∑ j = 1 M ( c j A ) T c j B + ( M − 1 ) ⋅ ξ C_{ik} \approx \sum_{j=1}^M (c_j^A)^T c_j^B + (M-1) \cdot \xi Cik≈j=1∑M(cjA)TcjB+(M−1)⋅ξ
其中 ξ \xi ξ 是目标常数。这将计算复杂度从 O ( M N ) O(MN) O(MN) 降低到 O ( M ) O(M) O(M),提供了显著的加速。
在理论上,如果核张量 G \mathcal{G} G 是对角的,即只有当 j = l j = l j=l 时 G j l \mathcal{G}_{jl} Gjl 非零,则等价于CP分解(CANDECOMP/PARAFAC):
C ≈ ∑ j = 1 M λ j u j v j T C \approx \sum_{j=1}^M \lambda_j u_j v_j^T C≈j=1∑MλjujvjT
其中 λ j \lambda_j λj 是奇异值, u j u_j uj 和 v j v_j vj 是奇异向量。这表明,通过强制码字间的正交性,可以近似实现矩阵的低秩分解,进一步降低计算复杂度。
基于浮点压缩的矩阵量化
浮点数表示与压缩的数值分析
标准IEEE 754浮点数使用32位(单精度)或64位(双精度)表示数值,包括符号位、指数位和尾数位。在许多应用中,如此高的精度是不必要的,我们可以通过降低位宽来压缩浮点数。半精度浮点数(FP16)使用16位,其中1位符号,5位指数,10位尾数,其表示范围约为 ± 65504 \pm 65504 ±65504,精度约为 2 − 10 ≈ 9.77 × 1 0 − 4 2^{-10} \approx 9.77 \times 10^{-4} 2−10≈9.77×10−4。相比之下,BFloat16使用16位,但分配为1位符号,8位指数,7位尾数,提供更大的表示范围但精度略低。
从数值分析角度,量化到低精度浮点数引入的相对舍入误差为:
∣ x − Q ( x ) ∣ ∣ x ∣ ≤ 2 − t \frac{|x - Q(x)|}{|x|} \leq 2^{-t} ∣x∣∣x−Q(x)∣≤2−t
其中 t t t 是尾数位数。对于FP16,相对误差上界约为 2 − 10 ≈ 9.77 × 1 0 − 4 2^{-10} \approx 9.77 \times 10^{-4} 2−10≈9.77×10−4;对于BFloat16,约为 2 − 7 ≈ 7.81 × 1 0 − 3 2^{-7} \approx 7.81 \times 10^{-3} 2−7≈7.81×10−3。
从信息论角度,浮点量化可以视为非均匀量化,其量化步长与数值成正比。对于范围 [ 2 e , 2 e + 1 ) [2^e, 2^{e+1}) [2e,2e+1) 内的数值,量化步长为 2 e − t 2^{e-t} 2e−t,这使得浮点表示在大范围的数值上都能保持相对精度。
当将矩阵元素量化到低精度浮点数时,数值稳定性分析变得至关重要。根据条件数理论,如果矩阵 A A A 的条件数为 κ ( A ) \kappa(A) κ(A),则量化后的矩阵 A ^ \hat{A} A^ 的相对误差满足:
∥ A − A ^ ∥ 2 ∥ A ∥ 2 ≤ κ ( A ) ⋅ 2 − t \frac{\|A - \hat{A}\|_2}{\|A\|_2} \leq \kappa(A) \cdot 2^{-t} ∥A∥2∥A−A^∥2≤κ(A)⋅2−t
这表明条件数高的矩阵对量化误差更敏感,可能需要更高的精度表示。
浮点量化的最优位宽分配
在实际应用中,可以根据数据分布特性为不同的矩阵元素分配不同的位宽,以最大化精度收益。最优位宽分配问题可以表述为:
min { b i j } ∑ i , j ( A i j − Q b i j ( A i j ) ) 2 , s.t. ∑ i , j b i j ≤ B \min_{\{b_{ij}\}} \sum_{i,j} (A_{ij} - Q_{b_{ij}}(A_{ij}))^2, \quad \text{s.t.} \sum_{i,j} b_{ij} \leq B {bij}mini,j∑(Aij−Qbij(Aij))2,s.t.i,j∑bij≤B
其中 b i j b_{ij} bij 是分配给元素 A i j A_{ij} Aij 的位数, B B B 是总位预算, Q b Q_{b} Qb 是使用 b b b 位的量化函数。
根据信息论结果,在高位率假设下,最优分配应成比例于局部复杂度:
b i j ∝ log ( 1 Δ i j ) b_{ij} \propto \log\left(\frac{1}{\Delta_{ij}}\right) bij∝log(Δij1)
其中 Δ i j \Delta_{ij} Δij 是元素 A i j A_{ij} Aij 的有效量化步长,与局部分布的信息熵相关。
对于遵循Laplace分布的数据,最优位宽分配近似为:
b i j ∝ log ( 1 + ∣ A i j ∣ ) b_{ij} \propto \log(1 + |A_{ij}|) bij∝log(1+∣Aij∣)
这表明应为绝对值较大的元素分配更多位。
对于遵循高斯分布 N ( 0 , σ i j 2 ) \mathcal{N}(0, \sigma_{ij}^2) N(0,σij2) 的数据,最优位宽分配近似为:
b i j ∝ log ( σ i j ) b_{ij} \propto \log(\sigma_{ij}) bij∝log(σij)
这表明应为方差较大的元素分配更多位。
混合精度量化的数值稳定性分析
混合精度量化利用矩阵中数值的分布特性,对不同部分或不同操作应用不同的精度。从数值稳定性角度,混合精度计算的误差分析需要考虑精度转换和积累过程。
对于矩阵乘法 C = A B C = AB C=AB,使用混合精度策略:
C = A B ≈ FP32 ( FP16 ( A ) × FP16 ( B ) ) C = AB \approx \text{FP32}(\text{FP16}(A) \times \text{FP16}(B)) C=AB≈FP32(FP16(A)×FP16(B))
前向误差分析表明,相对误差上界为:
∥ C − C ~ ∥ F ∥ C ∥ F ≤ n ⋅ ( 2 ϵ 16 + ϵ 32 + O ( ϵ 16 2 ) ) \frac{\|C - \tilde{C}\|_F}{\|C\|_F} \leq \sqrt{n} \cdot (2\epsilon_{16} + \epsilon_{32} + O(\epsilon_{16}^2)) ∥C∥F∥C−C~∥F≤n⋅(2ϵ16+ϵ32+O(ϵ162))
其中 n n n 是内积维度, ϵ 16 ≈ 2 − 10 \epsilon_{16} \approx 2^{-10} ϵ16≈2−10 和 ϵ 32 ≈ 2 − 23 \epsilon_{32} \approx 2^{-23} ϵ32≈2−23 分别是FP16和FP32的机器精度。
更精细的分析表明,当内积计算使用较高精度(如FP32累加器)时,累积误差可以显著降低:
∥ C − C ~ ∥ F ∥ C ∥ F ≤ n ⋅ ( 2 ϵ 16 + ϵ 32 ⋅ n + O ( ϵ 16 2 ) ) \frac{\|C - \tilde{C}\|_F}{\|C\|_F} \leq \sqrt{n} \cdot (2\epsilon_{16} + \epsilon_{32} \cdot \sqrt{n} + O(\epsilon_{16}^2)) ∥C∥F∥C−C~∥F≤n⋅(2ϵ16+ϵ32⋅n+O(ϵ162))
这解释了为什么混合精度策略(低精度乘法,高精度累加)在实践中如此有效。
对于迭代算法,如共轭梯度法,混合精度的数值稳定性分析更为复杂。引入条件数 κ \kappa κ 和迭代次数 T T T,收敛误差上界为:
∥ x T − x ∗ ∥ 2 ≤ ( 1 − 1 κ ) T ∥ x 0 − x ∗ ∥ 2 + κ ⋅ ϵ κ − 1 \|x_T - x^*\|_2 \leq (1 - \frac{1}{\kappa})^T \|x_0 - x^*\|_2 + \frac{\kappa \cdot \epsilon}{\kappa - 1} ∥xT−x∗∥2≤(1−κ1)T∥x0−x∗∥2+κ−1κ⋅ϵ
其中 ϵ \epsilon ϵ 是混合精度策略的有效精度。这表明,当条件数较大时,需要更高的精度以确保收敛到满意的解。
向量量化的理论分析
量化误差分析与信息论界限
向量量化引入的误差可以通过率失真理论(Rate-Distortion Theory)分析。对于向量 v v v 和其量化表示 Q ( v ) Q(v) Q(v),量化误差定义为:
ε = ∥ v − Q ( v ) ∥ 2 \varepsilon = \|v - Q(v)\|^2 ε=∥v−Q(v)∥2
对于 k k k 位的均匀量化器,应用于范围为 [ a , b ] [a, b] [a,b] 的标量,平均量化误差为:
E [ ε ] ≈ ( b − a ) 2 12 ⋅ 2 2 k \mathbb{E}[\varepsilon] \approx \frac{(b-a)^2}{12 \cdot 2^{2k}} E[ε]≈12⋅22k(b−a)2
对于向量量化,假设使用 K K K 个码字,平均量化误差的上界为:
E [ ε ] ≤ d K 2 / d ⋅ σ 2 \mathbb{E}[\varepsilon] \leq \frac{d}{K^{2/d}} \cdot \sigma^2 E[ε]≤K2/dd⋅σ2
其中 d d d 是向量维度, σ 2 \sigma^2 σ2 是数据方差。
从信息论角度,存在一个基本的率失真下界,称为香农下界(Shannon Lower Bound, SLB):
R ( D ) ≥ h ( X ) − 1 2 log ( 2 π e D ) R(D) \geq h(X) - \frac{1}{2}\log(2\pi e D) R(D)≥h(X)−21log(2πeD)
其中 h ( X ) h(X) h(X) 是随机变量 X X X 的微分熵。这表明,为了达到失真 D D D,至少需要 h ( X ) − 1 2 log ( 2 π e D ) h(X) - \frac{1}{2}\log(2\pi e D) h(X)−21log(2πeD) 比特的信息。
对于高斯源 X ∼ N ( 0 , σ 2 I d ) X \sim \mathcal{N}(0, \sigma^2 I_d) X∼N(0,σ2Id),率失真函数为:
R ( D ) = d 2 log ( σ 2 D ) , 0 < D ≤ σ 2 R(D) = \frac{d}{2}\log\left(\frac{\sigma^2}{D}\right), \quad 0 < D \leq \sigma^2 R(D)=2dlog(Dσ2),0<D≤σ2
这意味着,要将量化误差降低一半,需要额外的 d 2 \frac{d}{2} 2d 比特。这解释了为什么在高维空间中量化如此具有挑战性。
矩阵乘法的误差传播与稳定性
在矩阵乘法 C = A B C = AB C=AB 中,如果 A A A 和 B B B 被量化为 A ^ \hat{A} A^ 和 B ^ \hat{B} B^,则近似结果 C ^ = A ^ B ^ \hat{C} = \hat{A}\hat{B} C^=A^B^ 的误差可以分解为:
C − C ^ = ( A − A ^ ) B + A ^ ( B − B ^ ) C - \hat{C} = (A - \hat{A})B + \hat{A}(B - \hat{B}) C−C^=(A−A^)B+A^(B−B^)
应用矩阵范数的性质,有:
∥ C − C ^ ∥ F ≤ ∥ A − A ^ ∥ F ⋅ ∥ B ∥ 2 + ∥ A ^ ∥ 2 ⋅ ∥ B − B ^ ∥ F \|C - \hat{C}\|_F \leq \|A - \hat{A}\|_F \cdot \|B\|_2 + \|\hat{A}\|_2 \cdot \|B - \hat{B}\|_F ∥C−C^∥F≤∥A−A^∥F⋅∥B∥2+∥A^∥2⋅∥B−B^∥F
其中 ∥ ⋅ ∥ F \|\cdot\|_F ∥⋅∥F 表示Frobenius范数, ∥ ⋅ ∥ 2 \|\cdot\|_2 ∥⋅∥2 表示谱范数。
对于相对误差,假设 ∥ A − A ^ ∥ F ≤ ϵ A ∥ A ∥ F \|A - \hat{A}\|_F \leq \epsilon_A \|A\|_F ∥A−A^∥F≤ϵA∥A∥F 和 ∥ B − B ^ ∥ F ≤ ϵ B ∥ B ∥ F \|B - \hat{B}\|_F \leq \epsilon_B \|B\|_F ∥B−B^∥F≤ϵB∥B∥F,则:
∥ C − C ^ ∥ F ∥ C ∥ F ≤ ∥ A − A ^ ∥ F ⋅ ∥ B ∥ 2 + ∥ A ^ ∥ 2 ⋅ ∥ B − B ^ ∥ F ∥ A ∥ F ⋅ ∥ B ∥ F ⋅ ∥ A ∥ F ⋅ ∥ B ∥ F ∥ A B ∥ F \frac{\|C - \hat{C}\|_F}{\|C\|_F} \leq \frac{\|A - \hat{A}\|_F \cdot \|B\|_2 + \|\hat{A}\|_2 \cdot \|B - \hat{B}\|_F}{\|A\|_F \cdot \|B\|_F} \cdot \frac{\|A\|_F \cdot \|B\|_F}{\|AB\|_F} ∥C∥F∥C−C^∥F≤∥A∥F⋅∥B∥F∥A−A^∥F⋅∥B∥2+∥A^∥2⋅∥B−B^∥F⋅∥AB∥F∥A∥F⋅∥B∥F
引入条件数 κ ( A , B ) = ∥ A ∥ F ⋅ ∥ B ∥ F ∥ A B ∥ F \kappa(A, B) = \frac{\|A\|_F \cdot \|B\|_F}{\|AB\|_F} κ(A,B)=∥AB∥F∥A∥F⋅∥B∥F,有:
∥ C − C ^ ∥ F ∥ C ∥ F ≤ κ ( A , B ) ⋅ ( ϵ A ⋅ ∥ B ∥ 2 ∥ B ∥ F + ϵ B ⋅ ∥ A ^ ∥ 2 ∥ A ∥ F ) \frac{\|C - \hat{C}\|_F}{\|C\|_F} \leq \kappa(A, B) \cdot \left(\epsilon_A \cdot \frac{\|B\|_2}{\|B\|_F} + \epsilon_B \cdot \frac{\|\hat{A}\|_2}{\|A\|_F}\right) ∥C∥F∥C−C^∥F≤κ(A,B)⋅(ϵA⋅∥B∥F∥B∥2+ϵB⋅∥A∥F∥A^∥2)
对于随机矩阵, ∥ B ∥ 2 ∥ B ∥ F ≈ 1 p \frac{\|B\|_2}{\|B\|_F} \approx \frac{1}{\sqrt{p}} ∥B∥F∥B∥2≈p1 和 ∥ A ^ ∥ 2 ∥ A ∥ F ≈ 1 m \frac{\|\hat{A}\|_2}{\|A\|_F} \approx \frac{1}{\sqrt{m}} ∥A∥F∥A^∥2≈m1,其中 m m m 和 p p p 分别是矩阵的行数和列数。因此:
∥ C − C ^ ∥ F ∥ C ∥ F ≲ κ ( A , B ) ⋅ ( ϵ A p + ϵ B m ) \frac{\|C - \hat{C}\|_F}{\|C\|_F} \lesssim \kappa(A, B) \cdot \left(\frac{\epsilon_A}{\sqrt{p}} + \frac{\epsilon_B}{\sqrt{m}}\right) ∥C∥F∥C−C^∥F≲κ(A,B)⋅(pϵA+mϵB)
这表明,矩阵维度越大,量化误差的相对影响越小,但条件数的影响仍然显著。
量化敏感度与鲁棒性分析
不同的矩阵乘法应用对量化误差的敏感度各不相同。敏感度可以通过量化扰动的梯度来评估:
Sensitivity = ∥ ∂ ∥ C − C ^ ∥ F ∂ ϵ ∥ \text{Sensitivity} = \left\|\frac{\partial \|C - \hat{C}\|_F}{\partial \epsilon}\right\| Sensitivity= ∂ϵ∂∥C−C^∥F
其中 ϵ \epsilon ϵ 表示量化参数(如步长或位宽)。
对于给定的相对误差容忍度 τ \tau τ,要达到 ∥ C − C ^ ∥ F ∥ C ∥ F ≤ τ \frac{\|C - \hat{C}\|_F}{\|C\|_F} \leq \tau ∥C∥F∥C−C^∥F≤τ,所需的位宽至少为:
b ≥ 1 2 log 2 ( κ ( A , B ) 2 ⋅ ( p − 1 + m − 1 ) 12 τ 2 ) b \geq \frac{1}{2}\log_2\left(\frac{\kappa(A, B)^2 \cdot (p^{-1} + m^{-1})}{12 \tau^2}\right) b≥21log2(12τ2κ(A,B)2⋅(p−1+m−1))
这一结果强调了条件数在决定量化精度需求方面的关键作用。
鲁棒性分析关注的是在最坏情况下的量化误差。使用矩阵扰动理论,可以建立最坏情况下的误差界:
max ∥ A − A ^ ∥ F ≤ ϵ A ∥ A ∥ F , ∥ B − B ^ ∥ F ≤ ϵ B ∥ B ∥ F ∥ C − C ^ ∥ F ∥ C ∥ F = κ ( A , B ) ⋅ ( ϵ A + ϵ B ) \max_{\|A - \hat{A}\|_F \leq \epsilon_A \|A\|_F, \|B - \hat{B}\|_F \leq \epsilon_B \|B\|_F} \frac{\|C - \hat{C}\|_F}{\|C\|_F} = \kappa(A, B) \cdot (\epsilon_A + \epsilon_B) ∥A−A^∥F≤ϵA∥A∥F,∥B−B^∥F≤ϵB∥B∥Fmax∥C∥F∥C−C^∥F=κ(A,B)⋅(ϵA+ϵB)
这表明,条件数高的矩阵乘法本质上更容易受到量化误差的影响。
在实际应用中,可以通过预处理(如平衡化或正则化)降低条件数,从而提高量化鲁棒性。例如,对于矩阵 A A A,可以引入对角缩放矩阵 D 1 D_1 D1 和 D 2 D_2 D2,使得 A ~ = D 1 A D 2 \tilde{A} = D_1 A D_2 A~=D1AD2 的条件数最小化:
min D 1 , D 2 κ ( A ~ ) \min_{D_1, D_2} \kappa(\tilde{A}) D1,D2minκ(A~)
这种预处理可以显著提高量化性能,特别是对于条件数高的问题。
实例分析:基于向量量化的矩阵乘法
为了更具体地理解基于向量量化的矩阵乘法,我们通过一个简化的例子进行演示。假设我们有两个矩阵:
A = [ 2.1 3.2 1.5 0.8 1.9 2.8 1.2 0.5 0.7 0.9 4.2 3.6 0.4 0.6 3.8 4.1 ] , B = [ 1.8 0.3 2.2 1.5 0.2 1.9 0.2 3.1 1.4 0.1 2.7 1.1 ] A = \begin{bmatrix} 2.1 & 3.2 & 1.5 & 0.8 \\ 1.9 & 2.8 & 1.2 & 0.5 \\ 0.7 & 0.9 & 4.2 & 3.6 \\ 0.4 & 0.6 & 3.8 & 4.1 \end{bmatrix}, \quad B = \begin{bmatrix} 1.8 & 0.3 & 2.2 \\ 1.5 & 0.2 & 1.9 \\ 0.2 & 3.1 & 1.4 \\ 0.1 & 2.7 & 1.1 \end{bmatrix} A= 2.11.90.70.43.22.80.90.61.51.24.23.80.80.53.64.1 ,B= 1.81.50.20.10.30.23.12.72.21.91.41.1
基于乘积量化的近似计算
首先,我们将 A A A 的行向量和 B B B 的列向量分别划分为两个子向量:
A i , : = [ A i , 1 : 2 , A i , 3 : 4 ] , B : , j = [ B 1 : 2 , j , B 3 : 4 , j ] A_{i,:} = [A_{i,1:2}, A_{i,3:4}], \quad B_{:,j} = [B_{1:2,j}, B_{3:4,j}] Ai,:=[Ai,1:2,Ai,3:4],B:,j=[B1:2,j,B3:4,j]
接下来,我们对每个子空间应用 k k k-means 聚类(此处假设 k = 2 k=2 k=2),得到子码本:
A
A
A 的第一子空间码本:
C
1
A
=
{
[
2.0
,
3.0
]
,
[
0.55
,
0.75
]
}
\mathcal{C}_1^A = \{[2.0, 3.0], [0.55, 0.75]\}
C1A={[2.0,3.0],[0.55,0.75]}
A
A
A 的第二子空间码本:
C
2
A
=
{
[
1.35
,
0.65
]
,
[
4.0
,
3.85
]
}
\mathcal{C}_2^A = \{[1.35, 0.65], [4.0, 3.85]\}
C2A={[1.35,0.65],[4.0,3.85]}
B
B
B 的第一子空间码本:
C
1
B
=
{
[
1.65
,
0.25
]
,
[
0.15
,
2.9
]
}
\mathcal{C}_1^B = \{[1.65, 0.25], [0.15, 2.9]\}
C1B={[1.65,0.25],[0.15,2.9]}
B
B
B 的第二子空间码本:
C
2
B
=
{
[
2.05
,
1.25
]
,
[
1.25
,
1.5
]
}
\mathcal{C}_2^B = \{[2.05, 1.25], [1.25, 1.5]\}
C2B={[2.05,1.25],[1.25,1.5]}
对每个向量进行量化,得到码字索引:
A
A
A 的行量化索引:
{
(
0
,
0
)
,
(
0
,
0
)
,
(
1
,
1
)
,
(
1
,
1
)
}
\{(0,0), (0,0), (1,1), (1,1)\}
{(0,0),(0,0),(1,1),(1,1)}
B
B
B 的列量化索引:
{
(
0
,
0
)
,
(
1
,
0
)
,
(
0
,
1
)
}
\{(0,0), (1,0), (0,1)\}
{(0,0),(1,0),(0,1)}
预计算所有码字组合的内积,存储在查找表中:
T 11 = [ C 1 A [ 0 ] ⋅ C 1 B [ 0 ] C 1 A [ 0 ] ⋅ C 1 B [ 1 ] C 1 A [ 1 ] ⋅ C 1 B [ 0 ] C 1 A [ 1 ] ⋅ C 1 B [ 1 ] ] = [ 6.0 1.2 1.2 2.4 ] \mathcal{T}_{11} = \begin{bmatrix} \mathcal{C}_1^A[0] \cdot \mathcal{C}_1^B[0] & \mathcal{C}_1^A[0] \cdot \mathcal{C}_1^B[1] \\ \mathcal{C}_1^A[1] \cdot \mathcal{C}_1^B[0] & \mathcal{C}_1^A[1] \cdot \mathcal{C}_1^B[1] \end{bmatrix} = \begin{bmatrix} 6.0 & 1.2 \\ 1.2 & 2.4 \end{bmatrix} T11=[C1A[0]⋅C1B[0]C1A[1]⋅C1B[0]C1A[0]⋅C1B[1]C1A[1]⋅C1B[1]]=[6.01.21.22.4]
T 22 = [ C 2 A [ 0 ] ⋅ C 2 B [ 0 ] C 2 A [ 0 ] ⋅ C 2 B [ 1 ] C 2 A [ 1 ] ⋅ C 2 B [ 0 ] C 2 A [ 1 ] ⋅ C 2 B [ 1 ] ] = [ 3.6 2.8 15.8 11.5 ] \mathcal{T}_{22} = \begin{bmatrix} \mathcal{C}_2^A[0] \cdot \mathcal{C}_2^B[0] & \mathcal{C}_2^A[0] \cdot \mathcal{C}_2^B[1] \\ \mathcal{C}_2^A[1] \cdot \mathcal{C}_2^B[0] & \mathcal{C}_2^A[1] \cdot \mathcal{C}_2^B[1] \end{bmatrix} = \begin{bmatrix} 3.6 & 2.8 \\ 15.8 & 11.5 \end{bmatrix} T22=[C2A[0]⋅C2B[0]C2A[1]⋅C2B[0]C2A[0]⋅C2B[1]C2A[1]⋅C2B[1]]=[3.615.82.811.5]
最后,通过表查找和加法组装最终结果:
C ~ i j = T 11 [ I 1 A ( i ) , I 1 B ( j ) ] + T 22 [ I 2 A ( i ) , I 2 B ( j ) ] \tilde{C}_{ij} = \mathcal{T}_{11}[I_1^A(i), I_1^B(j)] + \mathcal{T}_{22}[I_2^A(i), I_2^B(j)] C~ij=T11[I1A(i),I1B(j)]+T22[I2A(i),I2B(j)]
其中 I k A ( i ) I_k^A(i) IkA(i) 和 I k B ( j ) I_k^B(j) IkB(j) 分别是第 i i i 行和第 j j j 列在第 k k k 个子空间的码字索引。
计算得到的近似矩阵乘积为:
C ~ = [ 9.6 4.0 8.8 9.6 4.0 8.8 17.0 13.9 14.3 17.0 13.9 14.3 ] \tilde{C} = \begin{bmatrix} 9.6 & 4.0 & 8.8 \\ 9.6 & 4.0 & 8.8 \\ 17.0 & 13.9 & 14.3 \\ 17.0 & 13.9 & 14.3 \end{bmatrix} C~= 9.69.617.017.04.04.013.913.98.88.814.314.3
对比精确的矩阵乘积:
C = A B = [ 9.72 3.98 9.02 8.59 3.47 7.97 17.15 14.11 14.24 16.15 13.87 13.25 ] C = AB = \begin{bmatrix} 9.72 & 3.98 & 9.02 \\ 8.59 & 3.47 & 7.97 \\ 17.15 & 14.11 & 14.24 \\ 16.15 & 13.87 & 13.25 \end{bmatrix} C=AB= 9.728.5917.1516.153.983.4714.1113.879.027.9714.2413.25
近似误差的Frobenius范数为: ∥ C − C ~ ∥ F ≈ 2.24 \|C - \tilde{C}\|_F \approx 2.24 ∥C−C~∥F≈2.24,相对误差约为6.1%。
这个简单的例子展示了基于乘积量化的矩阵乘法如何通过查表和简单加法操作大幅降低计算复杂度,同时保持可接受的精度。在实际应用中,可以通过增加子空间数量、优化码本大小和选择更适合数据分布的量化方法进一步提高性能。