向量下的相关系数R聚类

这篇博客讨论了如何度量随机变量的相似性,重点介绍了相关系数在多维空间中的应用。文章通过标准化过程解释了协差阵和相关阵之间的关系,并探讨了在二维或三维空间中判断向量相似性的方法,包括位置、长度、方向和夹角余弦。此外,还阐述了随机变量内积的概念,以及相关系数在衡量随机变量间‘角度’的意义。
摘要由CSDN通过智能技术生成

随机变量的相似性度量

随机变量是如何度量相似性/相关性的?

  方差 D ( x i ) = c o v ( x i , x i ) = E 2 ( x i − E ( x i ) ) D(x_i)=cov(x_i,x_i)=E^2(x_i-E(x_i)) D(xi)=cov(xi,xi)=E2(xiE(xi))
  事实上,对 x \mathbf x x而言,其方差是一个矩阵,记作协差阵 Σ \Sigma Σ,即 Σ = [ c o v ( x 1 , x 1 ) ⋯ c o v ( x 1 , x p ) ⋮ ⋮ c o v ( x p , x 1 ) ⋯ c o v ( x p , x p ) ] = [ σ 11 ⋯ σ 1 p ⋮ ⋮ σ p 1 ⋯ σ p p ] \Sigma=\begin{bmatrix}cov(x_1,x_1)&\cdots&cov(x_1,x_p)\\\vdots&&\vdots \\cov(x_p,x_1)&\cdots&cov(x_p,x_p)\end{bmatrix}=\begin{bmatrix}\sigma_{11}&\cdots&\sigma_{1p}\\\vdots&&\vdots \\\sigma_{p1}&\cdots&\sigma_{pp}\end{bmatrix} Σ=cov(x1,x1)cov(xp,x1)cov(x1,xp)cov(xp,xp)=σ11σp1σ1pσpp
  多维随机变量的相似性由相关系数阵 R \mathbf R R度量 R = [ c o v ( x i , x j ) σ i i σ j j ] = [ r 11 ⋯ r 1 p ⋮ ⋮ r p 1 ⋯ r p p ] \mathbf R=\begin{bmatrix}\frac{cov(x_i,x_j)}{\sqrt{\sigma_{ii}}\sqrt{\sigma_{jj}}}\end{bmatrix}=\begin{bmatrix}r_{11}&\cdots&r_{1p}\\\vdots&&\vdots \\r_{p1}&\cdots&r_{pp}\end{bmatrix} R=[σii σjj

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值