BOT-SORT完整跟踪代码详解(bot_sort.py)

1. 伪代码

2. STrack 类

# 这个类是用来存放轨迹的,每个轨迹都有一些自己的属性,例如id、边界框、预测框、状态等等
# 继承 BaseTrack 的单个 track 类
class STrack(BaseTrack):
    shared_kalman = KalmanFilter()

    def __init__(self, tlwh, score, feat=None, feat_history=50):  # bboxs  score  得分

        # wait activate
        # 初始化 track 全部都是 False 的状态
        # 一般是第一次出现某个 track 的情景
        self._tlwh = np.asarray(tlwh, dtype=np.float)
        self.kalman_filter = None
        self.mean, self.covariance = None, None
        self.is_activated = False

        self.score = score
        self.tracklet_len = 0

        self.smooth_feat = None
        self.curr_feat = None
        if feat is not None:
            self.update_features(feat)
        self.features = deque([], maxlen=feat_history)
        self.alpha = 0.9

    def update_features(self, feat):
        feat /= np.linalg.norm(feat)
        self.curr_feat = feat
        if self.smooth_feat is None:
            self.smooth_feat = feat
        else:
            self.smooth_feat = self.alpha * self.smooth_feat + (1 - self.alpha) * feat
        self.features.append(feat)
        self.smooth_feat /= np.linalg.norm(self.smooth_feat)  # 用于求范数,linalg本意为linear(线性) + algebra(代数),norm则表示范数

    # 预测这个 track 下一次的位置,其实就是调用自身卡尔曼的 predict 函数更新均值和方差
    def predict(self):
        mean_state = self.mean.copy()
        if self.state != TrackState.Tracked:
            mean_state[6] = 0
            mean_state[7] = 0

        self.mean, self.covariance = self.kalman_filter.predict(mean_state, self.covariance)

    @staticmethod
    # 这个就是 predict 函数的矩阵版本,做的事情是一样的
    def multi_predict(stracks):
        if len(stracks) > 0:
            multi_mean = np.asarray([st.mean.copy() for st in stracks])  # mean的值是从哪里来的???????????
            multi_covariance = np.asarray([st.covariance for st in stracks])
            for i, st in enumerate(stracks):
                if st.state != TrackState.Tracked:
                    multi_mean[i][6] = 0
                    multi_mean[i][7] = 0
            multi_mean, multi_covariance = STrack.shared_kalman.multi_predict(multi_mean, multi_covariance)
            for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
                stracks[i].mean = mean
                stracks[i].covariance = cov

    @staticmethod
    def multi_gmc(stracks, H=np.eye(2, 3)):  # 得到仿射矩阵后, 修正Kalman的结果
        if len(stracks) > 0:
            multi_mean = np.asarray([st.mean.copy() for st in stracks])
            multi_covariance = np.asarray([st.covariance for st in stracks])

            R = H[:2, :2]
            R8x8 = np.kron(np.eye(4, dtype=float), R)
            t = H[:2, 2]

            for i, (mean, cov) in enumerate(zip(multi_mean, multi_covariance)):
                mean = R8x8.dot(mean)
                mean[:2] += t
                cov = R8x8.dot(cov).dot(R8x8.transpose())

                stracks[i].mean = mean
                stracks[i].covariance = cov

    # 新激活一个轨迹,用轨迹的初始框来初始化对应的卡尔曼滤波器的参数,并且记录下 track 的 id
    # 这个是新建一个 track 调用的函数,并且如果是视频刚开始的话,直接会将 track 的状态变成激活态
    # 不是在视频刚开始激活的框的状态为未激活,需要下一帧还有检测框与其进行匹配才会变成激活状态
    def activate(self, kalman_filter, frame_id):
        """Start a new tracklet"""
        self.kalman_filter = kalman_filter
        self.track_id = self.next_id()

        # self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xywh(self._tlwh))
        self.mean, self.covariance = self.kalman_filter.initiate(self.tlwh_to_xywh(self._tlwh), self.score)

        self.tracklet_len = 0
        self.state = TrackState.Tracked
        if frame_id == 1:
            self.is_activated = True
        self.frame_id = frame_id
        self.start_frame = frame_id

    # 这个应该是轨迹被遮挡或者消失之后重新激活轨迹调用的函数
    def re_activate(self, new_track, frame_id, new_id=False):

        # self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance, self.tlwh_to_xywh(new_track.tlwh))
        self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance, self.tlwh_to_xywh(new_track.tlwh), new_track.score)  # ???????????????????
        if new_track.curr_feat is not None:
            self.update_features(new_track.curr_feat)
        self.tracklet_len = 0
        self.state = TrackState.Tracked
        self.is_activated = True
        self.frame_id = frame_id
        if new_id:
            self.track_id = self.next_id()
        self.score = new_track.score

    # 更新轨迹的位置
    def update(self, new_track, frame_id):  # self本身就是 轨迹
        """
        Update a matched track
        :type new_track: STrack  其实就是检测的 new_track
        :type frame_id: int
        :type update_feature: bool
        :return:
        """
        self.frame_id = frame_id
        self.tracklet_len += 1

        new_tlwh = new_track.tlwh

        self.mean, self.covariance = self.kalman_filter.update(self.mean, self.covariance, self.tlwh_to_xywh(new_tlwh), new_track.score)  # ?????????????????

        if new_track.curr_feat is not None:
            self.update_features(new_track.curr_feat)

        self.state = TrackState.Tracked
        self.is_activated = True

        self.score = new_track.score

    @property
    # @jit(nopython=True)
    # 这个函数很重要,在进行匹配的时候会调用到他,指的是 track 在经过卡尔曼预测之后在当前帧的位置
    # 所以这里用了 mean,因为卡尔曼经过 predict 之后会更新 mean 和 covariance 的状态,mean 是
    # [cx, cy, w, h, vx, vy, vw, vh],所以 self.mean[:4] 指的就是预测框的坐标信息
    def tlwh(self):
        """Get current position in bounding box format `(top left x, top left y,
                width, height)`.
        """
        if self.mean is None:
            return self._tlwh.copy()
        ret = self.mean[:4].copy()
        ret[:2] -= ret[2:] / 2  # 相当于是   中心点xy - 宽高的一半 = tl
        return ret

    @property
    def tlbr(self):
        """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[2:] += ret[:2]
        return ret

    @property
    def xywh(self):
        """Convert bounding box to format `(min x, min y, max x, max y)`, i.e.,
        `(top left, bottom right)`.
        """
        ret = self.tlwh.copy()
        ret[:2] += ret[2:] / 2.0
        return ret

    @staticmethod
    def tlwh_to_xyah(tlwh):
        """Convert bounding box to format `(center x, center y, aspect ratio,
        height)`, where the aspect ratio is `width / height`.
        """
        ret = np.asarray(tlwh).copy()
        ret[:2] += ret[2:] / 2
        ret[2] /= ret[3]
        return ret

    @staticmethod
    def tlwh_to_xywh(tlwh):
        """Convert bounding box to format `(center x, center y, width,
        height)`.
        """
        ret = np.asarray(tlwh).copy()
        ret[:2] += ret[2:] / 2
        return ret

    def to_xywh(self):
        return self.tlwh_to_xywh(self.tlwh)

    @staticmethod
    def tlbr_to_tlwh(tlbr):
        ret = np.asarray(tlbr).copy()
        ret[2:] -= ret[:2]
        return ret

    @staticmethod
    def tlwh_to_tlbr(tlwh):
        ret = np.asarray(tlwh).copy()
        ret[2:] += ret[:2]
        return ret

    def __repr__(self):
        return 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)

3. BoTSORT类

# 正片开始
class BoTSORT(object):
    def __init__(self, args, frame_rate=30):

        self.tracked_stracks = []  # type : list[STrack]  已追踪轨迹:在前一帧成功追踪的轨迹
        self.lost_stracks = []  # type : list[STrack]  失追轨迹:在前n帧失去追踪的轨迹(n<=30)
        self.removed_stracks = []  # type : list[STrack]  已删除轨迹:在前n帧失去追踪的轨迹(n>30)
        BaseTrack.clear_count()  # 应该是初始跟踪,所以清零

        self.frame_id = 0
        self.args = args

        self.track_high_thresh = args.track_high_thresh
        self.track_low_thresh = args.track_low_thresh
        self.new_track_thresh = args.new_track_thresh

        # 缓冲的帧数,超过这么多帧丢失目标才算是真正丢失
        self.buffer_size = int(frame_rate / 30.0 * args.track_buffer)
        self.max_time_lost = self.buffer_size
        self.kalman_filter = KalmanFilter()

        # ReID module
        self.proximity_thresh = args.proximity_thresh
        self.appearance_thresh = args.appearance_thresh

        if args.with_reid:
            self.encoder = FastReIDInterface(args.fast_reid_config, args.fast_reid_weights, args.device)

        if args.benchmark in ["MOT16", "dancetrack"]:
            pass
        else:
            self.gmc = GMC(method=args.cmc_method, verbose=[args.name, args.ablation])

    # 追踪主要逻辑函数
    def update(self, output_results, img):  # 检测输出结果   原图
        self.frame_id += 1
        activated_starcks = []  # 保存当前帧匹配到持续追踪的轨迹
        refind_stracks = []  # 保存当前帧匹配到之前目标丢失的轨迹
        lost_stracks = []  # 保存当前帧没有匹配到目标的轨迹
        removed_stracks = []  # 保存当前帧

        if len(output_results):
            # 第一步:将objects转换为x1,y1,x2,y2,score的格式,并构建strack
            # output_results 是 [xyxy,score] 或者 [xyxy, score, conf] 的情况
            if output_results.shape[1] == 5:
                scores = output_results[:, 4]
                bboxes = output_results[:, :4]
                classes = output_results[:, -1]
            else:
                # scores = output_results[:, 4] * output_results[:, 5]  # [left,top,right,bottom,obj_conf,cls_conf,cls_id]
                scores = output_results[:, 4]  # [left,top,right,bottom,cls_conf,cls_id]
                bboxes = output_results[:, :4]  # x1y1x2y2
                classes = output_results[:, -1]

            # 第二步:根据scroe和track_thresh将strack分为detetions(dets)(>=)和detections_low(dets_second)
            # Remove bad detections  移除效果比较差的检测,置信度低于0.1
            lowest_inds = scores > self.track_low_thresh
            bboxes = bboxes[lowest_inds]
            scores = scores[lowest_inds]
            classes = classes[lowest_inds]

            # Find high threshold detections  高置信度检测 0.65
            remain_inds = scores > self.args.track_high_thresh
            dets = bboxes[remain_inds]
            scores_keep = scores[remain_inds]
            classes_keep = classes[remain_inds]

        else:
            bboxes = []
            scores = []
            classes = []
            dets = []
            scores_keep = []
            classes_keep = []

        '''Extract embeddings '''
        if self.args.with_reid:
            features_keep = self.encoder.inference(img, dets)  # 获得检测框中,经过 ReID提取得到的特征向量

        if len(dets) > 0:
            '''Detections'''
            if self.args.with_reid:
                # 结果很特殊,因为类中实现了__repr__(self):
                # 'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)
                # [OT_1_(1 - 20), OT_2_(1 - 20), OT_3_(1 - 20)......]
                # 把初始框封装成 STrack 的格式
                detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s, f) for
                              (tlbr, s, f) in zip(dets, scores_keep, features_keep)]
            else:
                detections = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
                              (tlbr, s) in zip(dets, scores_keep)]
        else:
            detections = []

        ''' Add newly detected tracklets to tracked_stracks.    将新检测到的轨迹添加到tracked_stracks'''
        # 遍历tracked_stracks(所有的轨迹),如果track还activated,加入tracked_stracks(继续匹配该帧),否则加入unconfirmed
        unconfirmed = []  # 未确定的轨迹
        tracked_stracks = []  # 确定轨迹  # type: list[STrack]
        # is_activated表示除了第一帧外中途只出现一次的目标轨迹(新轨迹,没有匹配过或从未匹配到其他轨迹)
        for track in self.tracked_stracks:  # self.tracked_stracks : [OT_1_(1-20), OT_2_(1-20), OT_3_(1-20), OT_4_(1-20), OT_5_(1-20), OT_6_(1-20), OT_7_(1-20), OT_8_(1-20), OT_9_(3-20)]
            # 当 track 只有一帧的记录时,is_activated=False
            if not track.is_activated:  # track.is_activated 为 True表示,该轨迹是确定轨迹
                unconfirmed.append(track)
            else:
                tracked_stracks.append(track)

        ''' Step 2: First association, with high score detection boxes  高分检测框进行第一次关联'''
        # 第一次匹配
        # 将track_stracks和lost_stracks合并得到track_pool
        # 丢失的 track 代表某一帧可能丢了一次,但是仍然在缓冲帧范围之内,所以依然可以用来匹配
        strack_pool = joint_stracks(tracked_stracks, self.lost_stracks)  # OT_1_(1-20),'OT_{}_({}-{})'.format(self.track_id, self.start_frame, self.end_frame)  strack_pool : [OT_1_(1-20), OT_2_(1-20), OT_3_(1-20), OT_4_(1-20), OT_5_(1-20), OT_6_(1-20), OT_7_(1-20), OT_8_(1-20), OT_9_(3-20)]

        # Predict the current location with KF    用卡尔曼滤波预测
        # 将strack_pool送入muti_predict进行预测(卡尔曼滤波)
        STrack.multi_predict(strack_pool)

        # Fix camera motion  这一块先不管哈!!!!!!!!!!!!!!!
        warp = self.gmc.apply(img, dets)
        STrack.multi_gmc(strack_pool, warp)
        STrack.multi_gmc(unconfirmed, warp)

        # Associate with high score detection boxes  确定轨迹与丢失轨迹 与 高分检测框先进性匹配
        # 让预测后的 track 和当前帧的 detection 框做 cost_matrix,用的方式为 IOU 关联
        # 这里的 iou_distance 函数中调用了 track.tlbr,返回的是预测之后的 track 坐标信息
        ious_dists = matching.iou_distance(strack_pool, detections)  # 已计算出 IOU损失
        ious_dists_mask = (ious_dists > self.proximity_thresh)  # self.proximity_thresh = 0.5

        if not self.args.mot20:
            ious_dists = matching.fuse_score(ious_dists, detections)  # 我的理解:IOU结果与检测score结合了

        if self.args.with_reid:
            emb_dists = matching.embedding_distance(strack_pool, detections) / 2.0
            raw_emb_dists = emb_dists.copy()
            emb_dists[emb_dists > self.appearance_thresh] = 1.0  # 外观损失 大于 0.25,直接把损失定为 1
            emb_dists[ious_dists_mask] = 1.0  # 把 IOU损失过大的,直接定为 1 (ps:IOU与检测未结合的损失哈)
            dists = np.minimum(ious_dists, emb_dists)  # IOU与嵌入损失,取最小值

            # Popular ReID method (JDE / FairMOT)
            # raw_emb_dists = matching.embedding_distance(strack_pool, detections)
            # dists = matching.fuse_motion(self.kalman_filter, raw_emb_dists, strack_pool, detections)
            # emb_dists = dists

            # IoU making ReID
            # dists = matching.embedding_distance(strack_pool, detections)
            # dists[ious_dists_mask] = 1.0
        else:
            dists = ious_dists

        # 用match_thresh = 0.8(越大说明iou越小)过滤较小的iou,利用匈牙利算法进行匹配,得到matches, u_track, u_detection
        matches, u_track, u_detection = matching.linear_assignment(dists, thresh=self.args.match_thresh)  # 返回匹配的轨迹,未匹配轨迹,未匹配高分检测

        # 遍历matches,如果state为Tracked,调用update方法,并加入到activated_stracks,否则调用re_activate,并加入refind_stracks
        # matches = [itracked, idet] itracked指的是轨迹的索引,idet 指的是当前目标框的索引,意思是第几个轨迹匹配第几个目标框
        for itracked, idet in matches:
            track = strack_pool[itracked]
            det = detections[idet]
            # 对应 strack_pool 中的 tracked_stracks
            if track.state == TrackState.Tracked:
                # 更新轨迹的bbox为当前匹配到的bbox
                track.update(detections[idet], self.frame_id)
                # activated_starcks是目前能持续追踪到的轨迹
                activated_starcks.append(track)
            # 对应 strack_pool 中的 self.lost_stracks,重新激活 track
            else:
                track.re_activate(det, self.frame_id, new_id=False)
                # refind_stracks是重新追踪到的轨迹
                refind_stracks.append(track)

        # 第二次匹配:和低分的矩阵进行匹配
        ''' Step 3: Second association, with low score detection boxes'''
        if len(scores):
            inds_high = scores < self.args.track_high_thresh
            inds_low = scores > self.args.track_low_thresh
            inds_second = np.logical_and(inds_low, inds_high)  # 筛选分数处于0.1<分数<阈值的
            dets_second = bboxes[inds_second]
            scores_second = scores[inds_second]
            classes_second = classes[inds_second]
        else:
            dets_second = []
            scores_second = []
            classes_second = []

        # association the untrack to the low score detections
        if len(dets_second) > 0:
            '''Detections'''
            detections_second = [STrack(STrack.tlbr_to_tlwh(tlbr), s) for
                                 (tlbr, s) in zip(dets_second, scores_second)]
        else:
            detections_second = []

        # 找出第一次匹配中没匹配到的轨迹(激活状态)   找出 strack_pool 中没有被匹配到的 track(这帧目标被遮挡的情况)
        r_tracked_stracks = [strack_pool[i] for i in u_track if strack_pool[i].state == TrackState.Tracked]
        # 计算r_tracked_stracks和detections_second的iou_distance(代价矩阵)
        dists = matching.iou_distance(r_tracked_stracks, detections_second)
        # 用match_thresh = 0.8过滤较小的iou,利用匈牙利算法进行匹配,得到matches, u_track, u_detection
        matches, u_track, u_detection_second = matching.linear_assignment(dists, thresh=0.5)  # 分数比较低的目标框没有匹配到轨迹就会直接被扔掉,不会创建新的轨迹
        # 遍历matches,如果state为Tracked,调用update方法,并加入到activated_stracks,否则调用re_activate,并加入refind_stracks
        # 在低置信度的检测框中再次与没有被匹配到的 track 做 IOU 匹配
        for itracked, idet in matches:
            track = r_tracked_stracks[itracked]
            det = detections_second[idet]
            if track.state == TrackState.Tracked:
                track.update(det, self.frame_id)
                activated_starcks.append(track)
            else:
                track.re_activate(det, self.frame_id, new_id=False)
                refind_stracks.append(track)

        # 遍历u_track(第二次匹配也没匹配到的轨迹),将state不是Lost的轨迹,调用mark_losk方法,并加入lost_stracks,等待下一帧匹配
        # lost_stracks加入上一帧还在持续追踪但是这一帧两次匹配不到的轨迹
        # 如果 track 经过两次匹配之后还没有匹配到 box 的话,就标记为丢失了
        for it in u_track:
            track = r_tracked_stracks[it]
            if not track.state == TrackState.Lost:
                track.mark_lost()
                lost_stracks.append(track)

        '''Deal with unconfirmed tracks, usually tracks with only one beginning frame'''
        # 尝试匹配中途第一次出现的轨迹
        # 当前帧的目标框会优先和长期存在的轨迹(包括持续追踪的和断追的轨迹)匹配,再和只出现过一次的目标框匹配
        detections = [detections[i] for i in u_detection]
        # 计算unconfirmed和detections的iou_distance(代价矩阵)
        # unconfirmed是不活跃的轨迹(过了30帧)
        ious_dists = matching.iou_distance(unconfirmed, detections)
        ious_dists_mask = (ious_dists > self.proximity_thresh)
        if not self.args.mot20:
            ious_dists = matching.fuse_score(ious_dists, detections)

        if self.args.with_reid:
            emb_dists = matching.embedding_distance(unconfirmed, detections) / 2.0
            raw_emb_dists = emb_dists.copy()
            emb_dists[emb_dists > self.appearance_thresh] = 1.0
            emb_dists[ious_dists_mask] = 1.0
            dists = np.minimum(ious_dists, emb_dists)
        else:
            dists = ious_dists

        # 用match_thresh = 0.8过滤较小的iou,利用匈牙利算法进行匹配,得到matches, u_track, u_detection
        matches, u_unconfirmed, u_detection = matching.linear_assignment(dists, thresh=0.7)
        # 遍历matches,如果state为Tracked,调用update方法,并加入到activated_stracks,否则调用re_activate,并加入refind_stracks
        # 如果能够匹配上的话,说明这个 track 已经是确定状态了,用当前匹配到的框对卡尔曼的预测进行调节,并且将其加入到 activated_starcks
        for itracked, idet in matches:
            unconfirmed[itracked].update(detections[idet], self.frame_id)
            activated_starcks.append(unconfirmed[itracked])
        # 遍历u_unconfirmed,调用mark_removd方法,并加入removed_stracks
        for it in u_unconfirmed:
            # 中途出现一次的轨迹和当前目标框匹配失败,删除该轨迹(认为是检测器误判)
            # 真的需要直接删除吗??????
            track = unconfirmed[it]
            track.mark_removed()
            removed_stracks.append(track)

        """ Step 4: Init new stracks"""
        # 遍历u_detection(前两步都没匹配成功的目标框),对于score大于high_thresh,调用activate方法,并加入activated_stracks
        # 此时还没匹配的u_detection将赋予新的id
        # 经过上面这些步骤之后,如果还有没被匹配的检测框,说明可能画面中新来了一个物体
        # 那么就直接将他视为一个新的 track,但是这个 track 的状态并不是激活态
        # 在下一次循环的时候会先将他放到 unconfirmed_track 中去,然后根据有没有框匹配他来决定是激活还是丢弃
        for inew in u_detection:
            track = detections[inew]
            if track.score < self.new_track_thresh:
                continue

            # 只有第一帧新建的轨迹会被标记为is_activate=True,其他帧不会
            track.activate(self.kalman_filter, self.frame_id)
            # 把新的轨迹加入到当前活跃轨迹中
            activated_starcks.append(track)

        # 遍历lost_stracks,对于丢失超过max_time_lost(30)的轨迹,调用mark_removed方法,并加入removed_stracks
        """ Step 5: Update state"""
        # 对于丢失目标的 track 来说,判断他丢失的帧数是不是超过了 buffer 缓冲帧数,超过就删除
        for track in self.lost_stracks:
            if self.frame_id - track.end_frame > self.max_time_lost:
                track.mark_removed()
                removed_stracks.append(track)

        """ Merge """
        # print('Ramained match {} s'.format(t4-t3))
        # 遍历tracked_stracks,筛选出state为Tracked的轨迹,保存到tracked_stracks
        # 指上一帧匹配上的 track
        self.tracked_stracks = [t for t in self.tracked_stracks if t.state == TrackState.Tracked]
        # 将activated_stracks,refind_stracks合并到track_stracks
        # 加上这一帧新激活的 track(两次匹配到的 track,以及由 unconfirm 状态变为激活态的 track)
        self.tracked_stracks = joint_stracks(self.tracked_stracks, activated_starcks)
        # 加上丢帧目标重新被匹配的 track
        self.tracked_stracks = joint_stracks(self.tracked_stracks, refind_stracks)
        # 遍历lost_stracks,去除tracked_stracks和removed_stracks中存在的轨迹
        # self.lost_stracks 在经过这一帧的匹配之后如果被重新激活的话就将其移出列表
        self.lost_stracks = sub_stracks(self.lost_stracks, self.tracked_stracks)
        # 将这一帧丢失的 track 添加进列表
        self.lost_stracks.extend(lost_stracks)
        # self.lost_stracks 如果在缓冲帧数内一直没有被匹配上被 remove 的话也将其移出 lost_stracks 列表
        self.lost_stracks = sub_stracks(self.lost_stracks, self.removed_stracks)
        # 更新被移除的 track 列表
        self.removed_stracks.extend(removed_stracks)
        # 调用remove_duplicate_stracks函数,计算tracked_stracks,lost_stracks的iou_distance,对于iou_distance<0.15的认为是同一个轨迹,
        # 对比该轨迹在track_stracks和lost_stracks的跟踪帧数和长短,仅保留长的那个
        # 将这两段 track 中重合度高的部分给移除掉(暂时还不是特别理解为啥要这样)
        self.tracked_stracks, self.lost_stracks = remove_duplicate_stracks(self.tracked_stracks, self.lost_stracks)

        # get scores of lost tracks
        # 遍历tracked_stracks,将所有的is_activated为true的轨迹输出    得到最终的结果,也就是成功追踪的 track 序列
        # output_stracks = [track for track in self.tracked_stracks if track.is_activated]
        output_stracks = [track for track in self.tracked_stracks]


        return output_stracks

4. 方法

# 将 tlista 和 tlistb 的 track 给合并成一个大的列表
def joint_stracks(tlista, tlistb):  # 确定轨迹 + 丢失轨迹
    exists = {}
    res = []
    for t in tlista:
        exists[t.track_id] = 1
        res.append(t)
    for t in tlistb:
        tid = t.track_id
        if not exists.get(tid, 0):
            exists[tid] = 1
            res.append(t)
    return res


# 取两个 track 的不重合部分
def sub_stracks(tlista, tlistb):
    stracks = {}
    for t in tlista:
        stracks[t.track_id] = t
    for t in tlistb:
        tid = t.track_id
        if stracks.get(tid, 0):
            del stracks[tid]
    return list(stracks.values())


# 如果两段 track 离得很近的话,就要去掉一个
# 根据时间维度上出现的帧数多少来决定移除哪一边的 track
def remove_duplicate_stracks(stracksa, stracksb):  # self.tracked_stracks, self.lost_stracks
    pdist = matching.iou_distance(stracksa, stracksb)
    pairs = np.where(pdist < 0.15)
    dupa, dupb = list(), list()
    for p, q in zip(*pairs):
        timep = stracksa[p].frame_id - stracksa[p].start_frame
        timeq = stracksb[q].frame_id - stracksb[q].start_frame
        if timep > timeq:
            dupb.append(q)
        else:
            dupa.append(p)
    resa = [t for i, t in enumerate(stracksa) if not i in dupa]
    resb = [t for i, t in enumerate(stracksb) if not i in dupb]
    return resa, resb
### botsort 和 StrongSORT 的区别及应用场景 #### 主要差异 botsort 是一种轻量级的多目标跟踪算法,它结合了 ByteTrack 中的空间特征重叠匹配策略以及 DeepSort 中的 Re-ID 特征相似度计算方式。这种组合使得 bot-sort 能够有效地处理遮挡情况并保持较高的实时性能[^1]。 StrongSORT 则是在 DeepSort 基础上的改进版本,不仅继承了其优点——通过深度学习模型提取行人外观特征来增强跨摄像头场景下的鲁棒性;还加入了对轨迹管理机制的优化,从而提高了长时间序列中的稳定性与准确性[^2]。 #### 应用场景对比 对于资源受限环境或需要快速响应的应用场合(如无人机监控、移动机器人导航),由于 bot-sort 更加注重效率,在这些情况下可能更受欢迎。bot-sort 减少了不必要的复杂运算,专注于基本功能实现的同时保证了一定程度的目标识别精度。 而在追求高准确率和稳定性的视频分析任务中(例如城市安防系统、大型活动人群监测),StrongSORT 显示出了更大的优势。凭借强大的再识别能力和优秀的长期跟踪效果,能够更好地应对复杂的现实世界挑战,提供更为可靠的数据支持。 ```python # 示例代码展示两种算法初始化过程的不同之处 import numpy as np def init_bot_sort(): # 初始化 bot-sort 所需参数配置 config = { 'min_iou': 0.3, 'max_age': 70, 'nn_budget': 100 } return BotSortTracker(config) def init_strong_sort(): # 初始化 StrongSORT 所需参数配置 model_weights_path = "path/to/model/weights" device = "cuda" if torch.cuda.is_available() else "cpu" reid_model = load_reid_model(model_weights_path, device=device) tracker_config = { 'reid_model': reid_model, 'max_dist': 0.2, 'min_confidence': 0.3, 'nms_max_overlap': 1.0, 'max_iou_distance': 0.7, 'max_age': 30, 'n_init': 3 } return StrongSORT(tracker_config) if __name__ == "__main__": bot_tracker = init_bot_sort() strong_tracker = init_strong_sort() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值