数学分析:数项级数的性质

数学分析:数项级数的性质

通过上一节的内容,我们知道:级数的收敛与数列的收敛本质上是一回事。这使得通过数列的性质推导级数的性质成为了可能。

定理 1. 数项级数收敛的必要条件:设 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_{n} n=1xn 为任意一个级数,若 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_{n} n=1xn 收敛,则由其通项构成的数列 { x n } \{x_{n}\} {xn} 是无穷小量。即:

lim ⁡ n → ∞ x n = 0. \lim_{n \rightarrow \infty}x_{n} = 0. nlimxn=0.

证:

不妨设 ∑ n = 1 ∞ x x = S , S ∈ R \sum_{n=1}^{\infty}x_{x}=S,S \in \mathbb{R} n=1xx=S,SR,其部分和数列为 { S n } \{S_{n}\} {Sn},则有:

lim ⁡ n → ∞ S n = S . \lim_{n \rightarrow \infty} S_{n} = S. nlimSn=S.

从而有:

lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( S n − S n − 1 ) = lim ⁡ n → ∞ S n − lim ⁡ n → ∞ S n − 1 = S − S = 0. \lim_{n \rightarrow \infty}x_{n} = \lim_{n \rightarrow \infty}(S_{n}-S_{n-1}) = \lim_{n \rightarrow \infty}S_{n} - \lim_{n \rightarrow \infty}S_{n-1} = S - S =0. nlimxn=nlim(SnSn1)=nlimSnnlimSn1=SS=0.

证毕

附注定理 1 可用来判断某些级数发散。

例题:当 ∣ q ∣ ≥ 1 |q|\ge 1 q1 时, { q n } \{q^{n}\} {qn} 不是无穷小量,因此级数 ∑ n = 1 ∞ q n − 1 \sum_{n=1}^{\infty}q^{n-1} n=1qn1 发散。

定理 2. 级数收敛的 Cauchy 准则:级数 ∑ n = 1 ∞ x n \sum_{n=1}^{\infty}x_{n} n=1xn 收敛的 充分必要条件 为:对于任意给定的 ϵ > 0 \epsilon >0 ϵ>0,存在正整数 N N N,使得对一切 m > n > N m>n>N m>n>N,成立:

∣ x n + 1 + x n + 1 + ⋯ + x m ∣ = ∣ ∑ k = n + 1 m x k ∣ < ϵ . |x_{n+1}+x_{n+1}+\cdots+x_{m}|=\left|\sum_{k=n+1}^{m}x_{k}\right|<\epsilon. xn+1+xn+1++xm= k=n+1mxk <ϵ.

等价地,有另一表述:对于任意给定的 ϵ > 0 \epsilon >0 ϵ>0,存在正整数 N N N,使得对一切 n > N n>N n>N 和一切正整数 p p p 成立:

∣ x n + 1 + x n + 2 + ⋯ + x n + p ∣ = ∣ ∑ k = 1 p x n + k ∣ < ϵ . |x_{n+1}+x_{n+2}+\cdots+x_{n+p}| = \left|\sum_{k=1}^{p}x_{n+k}\right|<\epsilon. xn+1+xn+2++xn+p= k=1pxn+k <ϵ.

附注:对于 定理 2 的第二种表述,若取 p = 1 p=1 p=1,则得到 ∣ x n + 1 ∣ < ϵ , ∀   n > N |x_{n+1}|<\epsilon,\forall ~ n>N xn+1<ϵ, n>N,此即为 定理 1 中级数收敛的必要条件。

证:

对数项级数的部分和数列应用 数列收敛的 Cauchy 准则,即可得证。

证毕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值