(邱维声)高等代数课程笔记:数域

文章介绍了数域的概念,强调了数域在解决线性方程组中的重要性,指出有理数集、实数集和复数集作为数域的特性。数域需对加、减、乘、除运算封闭,以此保证线性方程组的解的存在性和唯一性。文中还提及了数系的扩充过程,从自然数到整数、有理数、实数和复数,以及证明了任何数域都包含有理数域。
摘要由CSDN通过智能技术生成

(邱维声)高等代数课程笔记:数域

\quad 回顾一下上一节的 主定理

定理 1:在有理数集(或实数集、复数集)内, n n n 元线性方程组的解有且仅有以下 3 3 3 种情况:无解,有唯一解,有无穷多解。

\quad 思考一下,为什么要限定在有理数集(或实数集、复数集)内呢?

\quad 原因在于:在将 n n n 元线性方程组的增广矩阵经过初等行变换化为阶梯形矩阵时,需要做加、减、乘、除四种运算。为了不影响方程组的求解,我们需要对这四种运算封闭。

\quad 什么是“集合对这四种运算封闭”?简单来说,就是集合中任意两个数的加、减、乘、除(除数不为零)后,仍属于该集合。

\quad 举个例子,在整数集内,即使形如 2 x = 1 2x = 1 2x=1 的简单方程,也是无解的!

\quad 由中学的数学知识可知,有理数集、实数集、复数集显然对加、减、乘、除运算封闭。

\quad 现在,我们可以受此启发,抽象出“数域”的概念。

定义 1. 数域:复数集的一个非空子集 K K K 若满足:
( i )   1 ∈ K (i) ~ 1 \in K (i) 1K;
( i i )   a , b ∈ K ⟹ a ± b ∈ K , a b ∈ K (ii) ~ a,b \in K \Longrightarrow a \pm b \in K,ab \in K (ii) a,bKa±bK,abK;
( i i i )   a , b ∈ K  且  b ≠ 0 ⟹ a b ∈ K (iii) ~ a,b \in K ~ \text{且} ~ b \ne 0 \Longrightarrow \frac{a}{b} \in K (iii) a,bK  b=0baK.
则称 K K K 是一个 数域

\quad 为了指明数域 K K K 的零元是 0 0 0,单位元是 1 1 1,通常会增强 定义 1 的条件为 定义 2。可以验证,二者是等价的!

定义 2. 数域:复数集的一个非空子集 K K K 若满足:
( i )   0 , 1 ∈ K (i) ~ 0,1 \in K (i) 0,1K;
( i i )   a , b ∈ K ⟹ a ± b ∈ K , a b ∈ K (ii) ~ a,b \in K \Longrightarrow a \pm b \in K,ab \in K (ii) a,bKa±bK,abK;
( i i i )   a , b ∈ K  且  b ≠ 0 ⟹ a b ∈ K (iii) ~ a,b \in K ~ \text{且} ~ b \ne 0 \Longrightarrow \frac{a}{b} \in K (iii) a,bK  b=0baK.
则称 K K K 是一个 数域

\quad 显然,有理数集 Q \mathbb{Q} Q、实数集 R \mathbb{R} R、复数集 C \mathbb{C} C 都是数域。而整数集 Z \mathbb{Z} Z 显然不是数域,因为它对除法不封闭!

\quad 另外,由 定义 1定义 2 可知,复数集 C \mathbb{C} C 是最大的数域!

\quad 了解一下 数系扩充

  • 自然数集对加法、乘法封闭,对减法不封闭。自然数集通过引入减法得到整数集;
  • 整数集对加、减、乘封闭,对除法不封闭。整数集通过引入除法得到有理数集合;
  • 有理数集对加、减、乘、除(除数不为零)封闭;
  • 实数集对加、减、乘、除(除数不为零)封闭;
  • 复数集对加、减、乘、除(除数不为零)封闭。

可以猜测:有理数集是最小的数域,任何数域都包含有理数域。

\quad 猜想是正确的,下面给出证明。

定理 1:任一数域都包含有理数域。

证明:
\quad K K K 为任一数域,因此 0 , 1 ∈ K 0,1\in K 0,1K. 由于 K K K 对加法封闭,因此

2 = 1 + 1 ∈ K , 3 = 2 + 1 ∈ K , ⋯   , n = ( n − 1 ) + 1 ∈ K , ⋯ 2 = 1 + 1 \in K,3 = 2 + 1 \in K,\cdots,n = (n-1)+ 1 \in K,\cdots 2=1+1K,3=2+1K,,n=(n1)+1K,

因此 N ⊆ K \mathbb{N} \subseteq K NK. 从而对任一自然数 n n n,有

− n = 0 − n ∈ K . -n = 0 - n \in K. n=0nK.

因此 Z ∈ K \mathbb{Z} \in K ZK. 进而任一分数

a b ∈ K   ( b ≠ 0 ) . \frac{a}{b} \in K ~(b \ne 0). baK (b=0).

因此 Q ⊆ K \mathbb{Q} \subseteq K QK.

#

\quad 以后,考虑严谨性,我们在讨论线性方程组时,总是假定在一个数域 K K K 中进行,称“数域 K K K 上的线性方程组”。同样的在讨论矩阵时,我们也总是假定是“数域 K K K 上的矩阵”。

\quad 显然,上一节的主定理对于任意数域 K K K 上的线性方程组都成立。

教材例题 1.


参考

  • 邱维声. 高等代数课程.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值