【AI】Agno框架:多代理智能体快速上手指南

在这里插入图片描述

https://github.com/agno-agi/agno#

https://docs.agno.com/introduction/quickstart

1. Agno 简介

  • Agno 是一个高性能、多代理(multi-agent)框架 + 运行时 + UI 组合,用于构建具有记忆、知识、工具使用、人机交互等能力的智能体系统。(docs.agno.com)
  • 它支持将多个 Agent 组织为团队 (Team) 或工作流 (Workflow),以便处理更复杂的任务。(Medium)
  • Agno 强调性能:Agent 的实例化非常快、内存开销小(以减少框架本身的开销)(GitHub)
  • 它支持多模态(text / image / audio / video)输入输出,以及任意模型提供商(模型无锁定)(Analytics Vidhya)
  • Agno 带有一个名为 AgentOS 的运行时 + UI 层(内置 FastAPI app + 前端界面),便于在云端部署、调试、监控 Agent。(docs.agno.com)

简单示意代码(摘自官方文档):

from agno.agent import Agent  
from agno.db.sqlite import SqliteDb  
from agno.models.anthropic import Claude  
from agno.os import AgentOS  
from agno.tools.mcp import MCPTools  

agno_agent = Agent(
    name="Agno Agent",
    model=Claude(id="claude-sonnet-4-5"),
    db=SqliteDb(db_file="agno.db"),
    tools=[MCPTools(transport="streamable-http", url="https://docs.agno.com/mcp")],
    add_history_to_context=True,
    markdown=True,
)

agent_os = AgentOS(agents=[agno_agent])
app = agent_os.get_app()

if __name__ == "__main__":
    agent_os.serve(app="agno_agent:app", reload=True)

(见官方 “What is Agno?” 页面)(docs.agno.com)


2. 关键理念与设计原则

理解 Agno 的核心设计思路,有助于更好地使用与扩展。

  • 简单 (Simplicity):不使用复杂的图、链式结构等模式,而是希望通过干净的 Python 代码定义 Agent。(PyPI)
  • 高性能 (Performance):Agent 实例化快、内存占用小。官方宣称“Agent instantiation ~3 微秒”级别的开销。(GitHub)
  • 模型无关 (Model-Agnostic):支持多种模型提供商、不同模型种类,无锁定。(PyPI)
  • 原生多模态:支持文本、图像、音频、视频输入输出,不需额外 hack。(Analytics Vidhya)
  • 组合式 / 插件化:各个子模块(工具、记忆、知识、推理模块等)是可插拔的,可以灵活定制。(workos.com)
  • 可观测性与监控:设计时考虑内置追踪、日志、调试、可视化。(workos.com)
  • 私有部署优先 & 数据隐私:AgentOS 运行在你自己的云里,控制面板通过浏览器连接,不需要外部服务。(docs.agno.com)

3. 核心组件与模块

下面分别介绍 Agno 的核心子系统与它们在 Agent 构造与运行中的职责。

3.1 Agent(智能体)

  • Agent 是 Agno 的核心抽象。它代表一个自主 AI 实体,由一个语言模型(LLM)驱动决策,同时可以调用工具 (Tools)、访问记忆 (Memory)、访问知识 (Knowledge)、执行推理 (Reasoning) 等。(Medium)

  • 创建 Agent 时,通常要配置以下组件 / 参数(部分可选):

    • model:选择使用的 LLM,例如 OpenAIChat / Claude / Groq / 其他支持的模型。(Medium)
    • tools:给 Agent 提供可调用的外部能力(详见下文 Tools 部分)。(workos.com)
    • memory / db / storage:处理对话状态、长期记忆或持久存储。(workos.com)
    • knowledge:如果有知识库或向量检索模块,可让 Agent 做检索增强推理 (RAG) 等操作。(Medium)
    • instructions / description:为 Agent 提供系统提示或角色说明,影响其行为风格。(workos.com)
    • 其他控制参数:如是否显示工具调用、是否以 Markdown 格式输出、中间推理步骤控制等。(workos.com)
  • Agent 执行流程(高层):

    1. 接收输入(用户 query 或任务)
    2. 模型判断下一步:直接生成回答、调用某个工具、先进行思考/推理
    3. 若调用工具,则执行工具,获取结果
    4. 将工具返回结果与上下文整合,再让模型生成最终输出
    5. 更新记忆 / 存储 / 知识状态(如果有)
    6. 返回响应给调用者
  • Agent 可串联调用多个工具、中间步骤可推理、也可以与其他 Agents 协作。(Medium)

3.2 工具 (Tools)

  • Tools 是 Agent 与外部系统 / API /资源交互的能力接口。Agent 可以在推理过程中决定调用哪个工具完成某子任务。
  • Agno 提供很多内置工具(或工具 wrapper),如 Web 搜索 (DuckDuckGoTools)、金融数据 (YFinanceTools)、推理工具 (ReasoningTools) 等。(workos.com)
  • 自定义工具也很简单,可以将 Python 函数或类封装成 Tool 接口,给 Agent 使用。(workos.com)
  • 在 Agent 响应过程中,模型可以输出一个工具调用(包括工具名 + 参数),框架自动将其执行并带回结果,再继续后续生成。(Medium)
  • 工具调用可异步、多并发执行(视实现)以提高效率。(GitHub)

3.3 记忆 (Memory) 与 存储 (Storage / DB)

  • 短期记忆 / 会话状态:用于在一次对话过程中追踪上下文、历史提问与模型输出。Agent 在推理时可以选择将历史上下文(消息、工具调用等)加入当前上下文。(docs.agno.com)
  • 长期记忆 / 持久存储:用于跨会话、跨用户地保存 Agent 的状态、用户偏好、知识、历史经验等。可通过数据库(如 SQLite、Postgres)来实现。(docs.agno.com)
  • 在 Agent 创建时可以指定 dbstorage 等参数,将记忆或历史写入持久化存储。(docs.agno.com)
  • 记忆策略、过滤、压缩、摘要能力对性能和质量至关重要(特别是在长期对话中)。Agno 提供一些辅助机制(例如控制上下文长度等)——具体细节可以在文档里查。

3.4 知识 (Knowledge / 向量检索 / RAG)

  • “知识”在 Agno 中通常指向量数据库 + 文档检索 + 检索增强 (Retrieval-Augmented Generation, RAG) 功能,帮助 Agent 在执行时检索与任务相关的背景信息、领域知识等。
  • Agent 可以在推理过程中调用知识模块,从数据库或索引中检索相关内容,并将其作为上下文提供给 LLM。(Medium)
  • 知识模块通常依赖外部向量存储(如 Postgres + PgVector、其他向量库)或检索系统。Agno 将知识模块设计为可插拔组件。(workos.com)
  • 通过知识检索,Agent 可以避免只靠 prompt 提供的上下文来回答问题,从而提升事实正确性、可解释性。

3.5 推理 (Reasoning)

  • 推理 (Reasoning) 模块是指那些辅助 Agent 执行推理过程(例如链式思考 / 分步推理 / 中间 “思考” 步骤等)的功能。
  • 有些任务需要 Agent 先“思考 /规划 /拆解”然后再调用工具,或分阶段输出中间结果。Agno 支持将这种推理过程作为 Agent 执行逻辑的一部分。(Medium)
  • 推理模块可以包含定制的思考 prompt、控制中间步骤输出方式、是否展示给用户等选项。

3.6 多代理协作:Team 与 Workflow

  • 当单个 Agent 无法胜任更复杂的任务时,可以将多个 Agent 组合为 Team 或定义为 Workflow / 工作流 形式。(Medium)
  • Team:多个 Agent 各司其职、协同工作,通常有协调者 /治理机制。可以让某些 Agent 负责资料检索,有些负责分析,有些负责生成报告。(Medium)
  • Workflow / 工作流:定义 Agent 按步骤执行、阶段性控制流程。比 Team 更具可控性。(docs.agno.com)
  • 多代理系统可以提升任务的模块化、可扩展性、可调试性,但也带来协调、通信、错误处理等复杂性。
  • 在 Team / Workflow 中,Agent 之间可能需要交换中间结果、调用顺序、回溯、判断分支等机制,这部分是高级用法。

3.7 运行时 / AgentOS / 部署

  • AgentOS 是 Agno 自带的运行时 + UI 层。它为 Agent / Team / Workflow 提供 API 接入、运行环境、前端界面用于调试和监控。(docs.agno.com)
  • AgentOS 自带一个 FastAPI 应用,你可以直接将定义好的 Agents / Teams 部署在这个环境中。(docs.agno.com)
  • 在部署时,你可以将 AgentOS 部署在你自己的云 /服务器上,前端 UI 通过浏览器连接。数据流程与 Agent 执行都留在你控制的环境中,有利于隐私与安全。(docs.agno.com)
  • 在生产环境,可能还需要考虑水平扩展、负载均衡、并发处理、容错、审计日志、API 网关等。

3.8 监控、评估与可视化

  • Agno 支持观测 Agent 的运行情况、调用日志、状态、性能指标等。(workos.com)
  • 在创建 Agent / Team 时可以启用监控 / 日志选项,以便在 UI 或仪表板里查看其行为、工具调用、中间状态等。(Medium)
  • 你也可以将 Agno 与第三方监控 /可视化平台(如 AgentOps)集成,以便更强的链路追踪、仪表板展示、指标统计等。(docs.agentops.ai)
  • 在 Agent 开发或调试阶段,可以打开 “debug 模式”,让系统在终端打印所有内部流程、工具调用等信息用于排查问题。

4. 快速上手示例

下面是一个较为完整但简洁的示例,它展示了如何用 Agno 创建一个 Agent,集成 Web 搜索工具,并让它回答实时查询。

from dotenv import load_dotenv
import os

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from agno.tools.duckduckgo import DuckDuckGoTools

# 加载 API Key(例如 OPENAI_API_KEY)
load_dotenv()

agent = Agent(
    name="NewsAgent",
    model=OpenAIChat(id="gpt-4o"),
    tools=[DuckDuckGoTools()],
    description="You are a news summarizer",
    instructions=["When answering, provide summary and links"],
    show_tool_calls=True,
    markdown=True,
)

agent.print_response("请给我今天的硅谷科技新闻", stream=True)

进一步,如果你想使用知识检索 (RAG)、或多个 Agent 协作、部署为服务,可参照以下思路:

  • 为 Agent 添加 memory / storage,让它能记住对话历史
  • 添加 knowledge 模块,使其能在文档库 / 向量索引中查找背景知识
  • 构建多个 Agent(如检索 Agent、分析 Agent、写报告 Agent)组成 Team
  • 使用 AgentOS 将其部署为 HTTP API + 前端 UI
  • 启用监控 / 日志以观察 Agent 运行时行为

你也可以参考 Agno GitHub 上的 Examples / Cookbook。(GitHub)

此外,这里有一个视频教程示例:使用 Agno 构建一个用于股票研究的多代理系统:

Build a Multi‑Agent AI System for Stock Research with Agno


5. 优势、挑战与对比

优势

  • 极高性能 / 轻量开销:Agent 实例化快、内存占用低。适合大规模并发使用。(GitHub)
  • 简洁的编程模型:无需复杂链条、图结构,仅 Python 写就 Agent 定义。(PyPI)
  • 灵活可扩展:模块化、可插拔设计,方便定制工具 / 存储 / 知识层等。(workos.com)
  • 多模态与模型无锁定:支持文本 / 图像 / 音频 / 视频,以及各种模型服务商。(Analytics Vidhya)
  • 自带运行时 + UI:便于部署与调试,无需从零架构 HTTP /前端界面。(docs.agno.com)
  • 隐私与数据控制:数据流全在你控制的环境中,不依赖外部托管服务。(docs.agno.com)
  • 可观测性 & 监控支持:方便调试、日志追踪、错误排查。(workos.com)

挑战或限制

  • 复杂代理协作的治理:Team / Workflow 的设计、通信、冲突处理、失败恢复等,需要额外设计,容易出错
  • 记忆 / 知识模块设计难度:长期记忆管理、检索效率、上下文压缩、过期处理等问题,需要谨慎设计
  • 资源瓶颈在模型推理:即使框架轻量,模型推理仍然是瓶颈(延迟、成本、吞吐量)
  • 学习曲线:虽然编程模型简洁,但要掌握多个模块(工具、知识、Team、监控)仍需投入
  • 文档 / 社区成熟度:相比更成熟的生态,某些高级用例、插件或边缘场景支持可能尚不完善
  • 可扩展性 / 并发控制:在高并发、分布式部署等场景下,需自行处理扩展、负载均衡、状态同步等问题

对比其他框架(如 LangChain / LangGraph / AutoGen 等)

  • 与 LangChain 相比,Agno 去掉许多链式 / 模板层,追求简单、纯 Python 编程体验
  • 与 LangGraph、AutoGen 等 Agent 框架相比,Agno 更强调性能、轻量、内存效率
  • 在一些博客/测评中,有对比称 Agno 在实例化速度、内存使用等方面比 LangGraph 有显著优势。(Analytics Vidhya)
  • 在治理 / 控制 /流程定义灵活性方面,某些框架可能提供更强的 DSL 或可视化流程支持(但也更复杂)

6. 实践建议与注意事项

  • 从简单 Agent 开始:先搭建一个能调用一个工具的 Agent,验证基本流程,再逐步加复杂性
  • 控制上下文窗口:对话历史、工具调用等上下文要管理(截断、摘要、过滤)以防超长输入
  • 设计合理的 Memory 策略:不要把所有历史都保留,考虑有用摘要、过期清理
  • 知识检索要配好向量数据库:选择适合的向量索引、检索策略(语义检索 + 精确检索混用)
  • 在 Team / Workflow 设计上,要考虑错误恢复、重试机制、超时处理等
  • 对工具调用的输入 / 输出要做校验 / 容错,以防工具失败导致整个 Agent 崩溃
  • 调试模式极其有用:在开发阶段开启 verbose / debug 输出以理解内部流程
  • 监控与日志不可少:在部署阶段要记录关键指标(延迟、错误率、调用频次、资源消耗等)
  • 安全性与隐私:不要在 Agent prompt 中硬编码敏感密钥或数据,网络通信要加密
  • 资源预算控制:模型推理成本可能占主导,考虑批处理、缓存、异步等策略

7. 拓展方向与研究前沿

  • 在更大规模的 Agent 网络中,如何优化调度、分布式执行、负载均衡
  • Agent 间通信协议 /协作模型(消息传递、黑板机制、协商机制等)
  • 自适应 / 自演化 Agent 架构,让 Agent 能动态生成 /分裂 /合并
  • 更高效的记忆压缩 /摘要 /检索策略
  • 跨模态融合能力更强的 Agent(同时处理图像、视频、文本、音频)
  • 安全、对抗性、鲁棒性:如何让 Agent 抵抗错误输入 /对抗样本 /恶意攻击
  • Agent 的可解释性 / 审计性:让系统输出可追踪的思考链与调用路径
  • 与其他 Agent 框架或标准的互操作性 /联合使用
  • 在特定行业(如金融、医疗、法律)中嵌入专业知识、法规约束等

在最近的一篇学术综述论文 《Agentic AI Frameworks: Architectures, Protocols, and Design Challenges》 中,也有对 Agno 及其它主流 Agent 框架的体系结构比较与挑战分析。(arXiv)


8. 参考资料

  • Agno “What is Agno?” 官方文档页面 (docs.agno.com)
  • Agno 在 GitHub 上的库与 README 描述 (GitHub)
  • “The agent framework for Python teams (WorkOS 博客)” — 对 Agno 的介绍与用法讲解 (workos.com)
  • 各类社区 / 博客 /教程,对 Agno 的实践经验、对比、评价等 (Medium)
  • AgentOps + Agno 集成示例 (docs.agentops.ai)
  • 学术综述《Agentic AI Frameworks: …》 (arXiv)

### 关于 Agno智能体框架的使用教程 Agno 是一个多模态智能体开发框架,其核心目标是简化多模态 AI 应用程序的构建过程。以下是关于如何使用 Agno 框架的相关信息: #### 安装 Agno 要开始使用 Agno,首先需要安装该框架。由于它是一个轻量级的 Python 工具包,可以通过 `pip` 进行安装: ```bash pip install agno-framework ``` #### 创建第一个多模态智能体 通过以下代码可以快速创建一个能够处理多种数据类型的智能体实例: ```python from agno import Agent # 初始化智能体 agent = Agent(modality="text", name="example_agent") # 添加训练数据 training_data = [ {"input": "你好!", "output": "你好!很高兴见到你。"}, {"input": "今天天气怎么样?", "output": "今天的天气非常不错!"} ] for data in training_data: agent.learn(data["input"], data["output"]) # 测试智能体响应 response = agent.respond("你好!") print(response) # 输出: 你好!很高兴见到你。 ``` 上述代码展示了如何初始化一个仅支持文本输入/输出的智能体,并对其进行简单的学习和测试操作。 #### 配置多模态能力 除了文本外,还可以配置其他模态的支持,例如图像、音频或视频。下面是如何扩展到图片识别的一个例子: ```python from PIL import Image import requests from io import BytesIO # 加载一张图片作为示例 url = 'https://via.placeholder.com/150' response = requests.get(url) img = Image.open(BytesIO(response.content)) # 将图片传递给智能体进行分析 result = agent.analyze_image(img) print(result) # 图片分类或其他视觉任务的结果 ``` 此部分利用了外部库(如 Pillow 和 Requests),但实际调用逻辑由 Agno 提供[^1]。 #### 性能监控与管理 为了更好地理解智能体的表现以及优化模型参数,在线平台 **agno.com** 可以为用户提供详细的会话记录和性能指标图表[^3]。登录账户后即可查看这些统计信息并调整相应设置来提升效率。 #### 动态少样本学习与 RAG 支持 得益于内部算法的设计,即使是在资源有限的情况下,Agno 能够高效完成检索增强生成 (Retrieval-Augmented Generation, RAG)[^2] 或者动态少量样例的学习任务。这意味着开发者无需担心大规模预训练所带来的高昂成本问题。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值