文章目录
ABSTRACT
该综述是对当前最先进的图摘要算法的一个结构化、全面化的概述。它首先阐述了图摘要背后的动机和挑战;然后,根据输入的图的类型对摘要方法进行分类,并根据核心方法对每个类别进行组织;最后,讨论了摘要在现实世界的应用,并通过一些开放问题来总结。
1 INTRODUCTION
由于产生的数据日益增多和快速,数据摘要越来越被需要,因此针对大量数据类型的图摘要方法被提出,而该综述主要是关注相互关联的数据的摘取(即图或者是网络)。接着给出图的定义与示例,同时又阐述了图摘要的好处,如下所示。
- 数据量和存储的减少
- 图算法和查询的加速
- 支持交互分析
- 噪音消除
最后介绍图摘要的应用,并为下文讲述如何获得图摘要做铺垫。
1.1 Challenges
- 数据量巨大
- 数据非常复杂
- “感兴趣”的定义。通常来说,方法只不过是在时间、空间、摘要中保存的信息、摘要中得到的解映射到原始点和边的复杂性的折中。作者根据自己感兴趣的点加以调整,带有主观性。
- 评价。对于一个好的摘要,评估的标准是越来越多样、复杂的。
- 随时间而变化。处理动态的流数据。
1.2 Types of Graph Summaries
- 输入:静态或者动态
- 输入:同构或者异构
- 核心技术:
- 基于分组和聚合
- 基于位压缩
- 基于简化和稀疏化
- 基于影响
- 输出:摘要的类型
- 输出:不重叠或者重叠的节点
- 主要的目标
1.3 Differences from Prior Surveys
- 综述中包括静态图、带有标签或者额外信息的静态图、动态图
- 将对科研人员有用的信息突出,如表
- 我们给出图摘要方法和相关领域的联系
- 介绍图摘要的应用,提出未来研究的问题和机会
2 STATIC GRAPH SUMMARIZATION: PLAIN NETWORKS
2.1 Grouping-Based Methods
2.1.1 Node-Grouping Methods
-
基于点聚类的方法
-
基于点聚合的方法
- GraSS
- Weighted Compr
- COARSENET
- lp-reconstr.Error
- Motifs
- CoSum