高等数学考研笔记(三)

高等数学考研笔记(三):微分学(上)

  • 导数:
    • 定义: f ′ ( x 0 ) = lim ⁡ Δ x → 0 Δ y Δ x = lim ⁡ Δ x → 0 f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'(x_0) = \lim\limits_{\Delta x\rightarrow 0} \cfrac{\Delta y}{\Delta x} =\lim\limits_{\Delta x\rightarrow 0} \cfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxΔy=Δx0limΔxf(x0+Δx)f(x0);

      ⇒ \Rightarrow 左导数: f − ′ ( x 0 ) = lim ⁡ Δ x → 0 − f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_-(x_0) = \lim\limits_{\Delta x\rightarrow 0^-} \cfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f(x0)=Δx0limΔxf(x0+Δx)f(x0),右导数: f + ′ ( x 0 ) = lim ⁡ Δ x → 0 + f ( x 0 + Δ x ) − f ( x 0 ) Δ x f'_+(x_0) = \lim\limits_{\Delta x\rightarrow 0^+} \cfrac{f(x_0+\Delta x)-f(x_0)}{\Delta x} f+(x0)=Δx0+limΔxf(x0+Δx)f(x0)

      ⇒ \Rightarrow 若f(x)在区间 I I I上有连续的导函数,则称f(x)在I上连续可导;
      ⇒ \Rightarrow 对于一元函数而言:可导必定连续,连续不一定可导

      ⇒ \Rightarrow 可导的充要条件函数在该点连续且左导数、右导数都存在并相等

      ⇒ \Rightarrow 函数在某区间内==可导,则该区间内导函数一定不存在第一类间断点==,可能存在第二类间断点;

    • 基本求导法则:

      • 四则运算:
        ( u + ‾ v ) ′ = u ′ + ‾ v ′ ( u ⋅ v ) ′ = u ′ v + u v ′ ( u v ) ′ = u ′ v − u v ′ v 2 (u\underline +v)' = u'\underline +v'\\ (u\cdot v)' = u'v + uv'\\ (\frac{u}{v})' = \frac{u'v-uv'}{v^2} (u+v)=u+v(uv)=uv+uv(vu)=v2uvuv

      • 莱布尼兹公式: [ u ⋅ v ] ( n ) = ∑ i = 0 n C n i u ( i ) ⋅ v ( n − i ) [u\cdot v]^{(n)} = \sum_{i=0}^n C_n^iu^{(i)}\cdot v^{(n-i)} [uv](n)=i=0nCniu(i)v(ni)

      • 复合运算: [ u ( v ) ] ′ = u ′ ( v ) ⋅ v ′ [u(v)]' = u'(v)\cdot v' [u(v)]=u(v)v

      • 反函数求导: f ′ ( x ) = 1 φ ′ ( y ) f'(x) = \frac{1}{\varphi'(y)} f(x)=φ(y)1, 其中 f ( x ) f(x) f(x) φ ( y ) \varphi(y) φ(y)互为反函数;

      • 参数方程求导法则: f ′ ( x ) = y ′ ( t ) x ′ ( t ) f'(x) = \frac{y'(t)}{x'(t)} f(x)=x(t)y(t),其中 x = x ( t ) x=x(t) x=x(t),

      • 极坐标方程求导法则: f ′ ( x ) = y ′ ( θ ) x ′ ( θ ) = ρ ′ ( θ ) s i n θ + ρ ( θ ) c o s θ ρ ′ ( θ ) c o s θ − ρ ( θ ) s i n θ f'(x) = \frac{y'(\theta)}{x'(\theta)} = \frac{\rho'(\theta)sin\theta+\rho(\theta)cos\theta}{\rho'(\theta)cos\theta-\rho(\theta)sin\theta} f(x)=x(θ)y(θ)=ρ(θ)cosθρ(θ)sinθρ(θ)sinθ+ρ(θ)cosθ,其中 x = ρ ( θ ) c o s θ x=\rho(\theta)cos\theta x=ρ(θ)cosθ, y = ρ ( θ ) s i n θ y=\rho(\theta)sin\theta y=ρ(θ)sinθ

    • 基本初等函数求导公式:
      函数导数
      f ( x ) = C f(x) = C f(x)=C f ′ ( x ) = 0 f'(x) = 0 f(x)=0
      f ( x ) = x n f(x) = x^n f(x)=xn f ( x ) = n x n − 1 f(x) = nx^{n-1} f(x)=nxn1
      f ( x ) = a x f(x) = a^x f(x)=ax f ( x ) = a x l n a f(x) = a^x ln a f(x)=axlna
      f ( x ) = l o g a x f(x) = log_ax f(x)=logax f ( x ) = 1 x l n a f(x) = \cfrac{1}{xln a} f(x)=xlna1
      f ( x ) = s i n x f(x) = sinx f(x)=sinx f ( x ) = c o s x f(x) = cosx f(x)=cosx
      f ( x ) = c o s x f(x) = cosx f(x)=cosx f ( x ) = − s i n x f(x) = -sinx f(x)=sinx
      f ( x ) = t a n x f(x) = tanx f(x)=tanx f ( x ) = s e c 2 x f(x) = sec^2x f(x)=sec2x
      f ( x ) = c o t x f(x) = cotx f(x)=cotx f ( x ) = − c s c 2 x f(x) = -csc^2x f(x)=csc2x
      f ( x ) = s e c x f(x) = secx f(x)=secx f ( x ) = s e c x ⋅ t a n x f(x) = secx \cdot tanx f(x)=secxtanx
      f ( x ) = c s c x f(x) = cscx f(x)=cscx f ( x ) = − c s c x ⋅ c o s x f(x) = -cscx\cdot cosx f(x)=cscxcosx
      f ( x ) = a r c s i n x f(x) = arcsinx f(x)=arcsinx f ( x ) = 1 1 − x 2 f(x) = \cfrac{1}{\sqrt{1-x^2}} f(x)=1x2 1
      f ( x ) = a r c c o s x f(x) = arccosx f(x)=arccosx f ( x ) = − 1 1 − x 2 f(x) = \cfrac{-1}{\sqrt{1-x^2}} f(x)=1x2 1
      f ( x ) = a r c t a n x f(x) = arctanx f(x)=arctanx f ( x ) = 1 1 + x 2 f(x) = \cfrac{1}{1+x^2} f(x)=1+x21
      f ( x ) = a r c c o t x f(x) = arccotx f(x)=arccotx f ( x ) = − 1 1 + x 2 f(x) = \cfrac{-1}{1+x^2} f(x)=1+x21
    • 常用特殊函数求导公式:
      函数导数
      f ( x ) = 1 x f(x) = \cfrac{1}{x} f(x)=x1 f ( x ) = − 1 x 2 f(x) = \cfrac{-1}{x^2} f(x)=x21
      f ( x ) = c x + d a x + b f(x) = \cfrac{cx+d}{ax+b} f(x)=ax+bcx+d f ( x ) = b c − a d ( a x + b ) 2 f(x) = \cfrac{bc-ad}{(ax+b)^2} f(x)=(ax+b)2bcad
      f ( x ) = 1 + x 2 f(x) = \sqrt{1+x^2} f(x)=1+x2 f ( x ) = x 1 + x 2 f(x) = \cfrac{x}{\sqrt{1+x^2}} f(x)=1+x2 x
      f ( x ) = 1 1 + x 2 f(x) = \cfrac{1}{\sqrt{1+x^2}} f(x)=1+x2 1 f ( x ) = − x ( 1 + x 2 ) 3 2 f(x) = \cfrac{-x}{(1+x^2)^{\frac{3}{2}}} f(x)=(1+x2)23x
      f ( x ) = x 1 + x 2 f(x) = \cfrac{x}{\sqrt{1+x^2}} f(x)=1+x2 x f ( x ) = 1 ( 1 + x 2 ) 3 2 f(x) = \cfrac{1}{(1+x^2)^{\frac{3}{2}}} f(x)=(1+x2)231
      f ( x ) = e x f(x) = e^x f(x)=ex f ( x ) = e x f(x) = e^x f(x)=ex
      f ( x ) = l n x f(x) = lnx f(x)=lnx f ( x ) = 1 x f(x) = \cfrac{1}{x} f(x)=x1
      f ( x ) = s h x f(x) = shx f(x)=shx f ( x ) = c h x f(x) = chx f(x)=chx
      f ( x ) = c h x f(x) = chx f(x)=chx f ( x ) = s h x f(x) = shx f(x)=shx
      f ( x ) = t h x f(x) = thx f(x)=thx f ( x ) = 1 c h 2 x f(x) = \cfrac{1}{ch^2x} f(x)=ch2x1
      f ( x ) = a r c s h x = l n ( x + x 2 + 1 ) f(x) = arcshx = ln(x+\sqrt{x^2+1}) f(x)=arcshx=ln(x+x2+1 ) f ( x ) = 1 x 2 + 1 f(x) = \cfrac{1}{\sqrt{x^2+1}} f(x)=x2+1 1
      f ( x ) = a r c c h x = l n ( x + x 2 − 1 ) f(x) = arcchx = ln(x+\sqrt{x^2-1}) f(x)=arcchx=ln(x+x21 ) f ( x ) = 1 x 2 − 1 f(x) = \cfrac{1}{\sqrt{x^2-1}} f(x)=x21 1
      f ( x ) = a r c t h x = 1 2 l n 1 + x 1 − x f(x) = arcthx = \cfrac{1}{2}ln\cfrac{1+x}{1-x} f(x)=arcthx=21ln1x1+x f ( x ) = 1 1 − x 2 f(x) = \cfrac{1}{1-x^2} f(x)=1x21
  • 微分:
    • 定义:若有表达式 f ( x + Δ x ) − f ( x ) = Δ y = A ( x ) Δ x + o ( Δ x ) f(x+\Delta x)-f(x)=\Delta y = A(x)\Delta x + o(\Delta x) f(x+Δx)f(x)=Δy=A(x)Δx+o(Δx)成立,则称f(x)在x可微,并称 A ( x ) Δ x A(x)\Delta x A(x)Δx是f(x)在x处的微分,记作 d f ( x ) = d y = A ( x ) Δ x = A ( x ) d x df(x)=dy=A(x)\Delta x = A(x)dx df(x)=dy=A(x)Δx=A(x)dx
      ⇒ \Rightarrow 对于一元函数而言,可微是可导的充要条件,且: d ( f ( x ) ) = f ′ ( x ) d x d(f(x)) = f'(x)dx d(f(x))=f(x)dx

    • 微分运算法则:(设u,v都是可微函数)
      d ( u + ‾ v ) = d u + ‾ d v d ( u v ) = u d v + v d u d ( u v ) = v d u − u d v v 2 ( v ≠ 0 ) d(u \underline + v) = du \underline + dv\\ d(uv) = udv + vdu\\ d(\cfrac{u}{v}) = \cfrac{vdu-udv}{v^2}(v\ne 0) d(u+v)=du+dvd(uv)=udv+vdud(vu)=v2vduudv(v=0)

    • 一阶微分形式不变性:设 y = f ( u ) y=f(u) y=f(u),则无论u是自变量还是中间变量 u = ϕ ( x ) u=\phi(x) u=ϕ(x),其微分公式保持同一形式: d y = f ′ ( u ) d u dy = f'(u)du dy=f(u)du

  • 微分中值定理:
    • 费马定理:若 f ( x ) f(x) f(x)定义在区间 I I I上,且在I的一内点c处取得最值,则在这点存在导数 f ′ ( c ) = 0 f'(c) = 0 f(c)=0
    • 达布定理:若 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]内有有限导数,则函数 f ′ ( x ) f'(x) f(x)必定至少一次取得介于 f ′ ( a ) f'(a) f(a) f ′ ( b ) f'(b) f(b)之间的每一个值;
    • 罗尔中值定理:若 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上定义且连续,至少在开区间 ( a , b ) (a,b) (a,b)内存在有限导数 f ′ ( x ) f'(x) f(x), 且 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b), 则 ( a , b ) (a,b) (a,b)存在一内点c,使得 f ′ ( c ) = 0 f'(c) = 0 f(c)=0;
    • 拉格朗日中值定理:若 f ( x ) f(x) f(x)在闭区间 [ a , b ] [a,b] [a,b]上定义且连续,至少在开区间 ( a , b ) (a,b) (a,b)内存在有限导数 f ′ ( x ) f'(x) f(x),则 ( a , b ) (a,b) (a,b)存在一内点c,使得 f ′ ( c ) = f ( b ) − f ( a ) b − a f'(c) = \frac{f(b)-f(a)}{b-a} f(c)=baf(b)f(a);
    • 柯西中值定理:若 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)在闭区间 [ a , b ] [a,b] [a,b]上定义且连续,至少在开区间 ( a , b ) (a,b) (a,b)内存在有限导数 f ′ ( x ) , g ′ ( x ) ( g ′ ( x ) ≠ 0 ) f'(x),g'(x) (g'(x)≠0) f(x),g(x)(g(x)=0),则 ( a , b ) (a,b) (a,b)存在一内点c,使得 f ′ ( c ) g ′ ( c ) = f ( b ) − f ( a ) g ( b ) − g ( a ) \frac{f'(c)}{g'(c)} = \frac{f(b)-f(a)}{g(b)-g(a)} g(c)f(c)=g(b)g(a)f(b)f(a);
  • 泰勒公式:
    • 一元泰勒公式:设f(x)在x0的某邻域U内有直到n+1阶的导数,则 ∀ x ∈ U \forall x\in U xU
      f ( x ) = ∑ k = 0 n f ( k ) ( x 0 ) k ! ( x − x 0 ) k + R n ( x ) f(x) = \sum\limits_{k=0}^n\cfrac{f^{(k)}(x_0)}{k!}(x-x_0)^k+R_n(x) f(x)=k=0nk!f(k)(x0)(xx0)k+Rn(x)
      ⇒ \Rightarrow 特殊地,当 x 0 = 0 x_0 = 0 x0=0时,称麦克劳林展开式;

      ⇒ \Rightarrow 不是任何函数都能在任何一点进行泰勒展开(不一定收敛);

    • 二元泰勒公式:设f(x,y)在点(x0,y0)的某邻域U内n+1阶连续可微,则 ∀ ( x , y ) ∈ U \forall (x,y)\in U (x,y)U
      f ( x , y ) = ∑ k = 0 n ( ∂ f ( x 0 , y 0 ) ∂ x ( x − x 0 ) + ∂ f ( x 0 , y 0 ) ∂ y ( y − y 0 ) ) k k ! + R n ( x , y ) f(x,y) = \sum\limits_{k=0}^n \cfrac{( \cfrac{\partial f(x_0,y_0)}{\partial x}(x-x_0)+\cfrac{\partial f(x_0,y_0)}{\partial y}(y-y_0))^k}{k!}+R_n(x,y) f(x,y)=k=0nk!(xf(x0,y0)(xx0)+yf(x0,y0)(yy0))k+Rn(x,y)

    • 余项 R n ( x ) R_n(x) Rn(x)

      名称表达式
      皮亚诺余项 R n ( x ) = ο ( x − x 0 ) n R_n(x) = \omicron(x-x_0)^{n} Rn(x)=ο(xx0)n
      拉格朗日余项 R n ( x ) = f ( n + 1 ) ( η ) ( n + 1 ) ! ( x − x 0 ) n + 1 R_n(x) = \frac{f^{(n+1)}(\eta)}{(n+1)!}(x-x_0)^{n+1} Rn(x)=(n+1)!f(n+1)(η)(xx0)n+1,其中 η ∈ ( x 0 , x ) \eta \in (x_0,x) η(x0,x)
      柯西余项 R n ( x ) = f ( n + 1 ) ( x 0 + θ ( x − x 0 ) ) n ! ( 1 − θ ) n ( x − x 0 ) n + 1 R_n(x) = \frac{f^{(n+1)}(x_0+\theta(x-x_0))}{n!}(1-\theta)^n(x-x_0)^{n+1} Rn(x)=n!f(n+1)(x0+θ(xx0))(1θ)n(xx0)n+1,其中 θ ∈ ( 0 , 1 ) \theta \in (0,1) θ(0,1)
      施勒米尔希余项 R n ( x ) = f ( n + 1 ) ( x 0 + θ ( x − x 0 ) ) n ! ( 1 − θ ) n + 1 − p p ( x − x 0 ) n + 1 R_n(x) = \frac{f^{(n+1)}(x_0+\theta(x-x_0))}{n!}\frac{(1-\theta)^{n+1-p}}{p}(x-x_0)^{n+1} Rn(x)=n!f(n+1)(x0+θ(xx0))p(1θ)n+1p(xx0)n+1,其中 θ ∈ ( 0 , 1 ) , p \theta \in (0,1),p θ(0,1),p是任意正整数,
      注意到:当 p = 1 p=1 p=1时即为柯西余项,当 p = n + 1 p=n+1 p=n+1即为拉格朗日余项
      积分余项 R n ( x ) = ( − 1 ) n n ! ∫ x 0 x ( t − x ) n f ( n + 1 ) ( t ) d t R_n(x) = \frac{(-1)^{n}}{n!}\int_{x_0}^x(t-x)^{n}f^{(n+1)}(t)dt Rn(x)=n!(1)nx0x(tx)nf(n+1)(t)dt
    • 常见函数的泰勒展开式:
      函数定义域泰勒展开式/麦克劳林展开式
      ( 1 + x ) α (1+x)^{\alpha} (1+x)α x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) 1 + ∑ i = 1 ∞ α ( α − 1 ) . . . ( α − i + 1 ) i ! x i = 1 + α x + α ( α − 1 ) 2 ! x 2 + . . . + α ( α − 1 ) . . . ( α − n + 1 ) n ! x n + R n ( x ) 1+\sum_{i=1}^{\infty}\frac{\alpha(\alpha-1)...(\alpha-i+1)}{i!}x^i = 1+\alpha x+\frac{\alpha(\alpha-1)}{2!}x^2+...+\frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}x^n+R_n(x) 1+i=1i!α(α1)...(αi+1)xi=1+αx+2!α(α1)x2+...+n!α(α1)...(αn+1)xn+Rn(x)
      e x e^x ex R R R ∑ i = 0 ∞ 1 i ! x i = 1 + x + 1 2 ! x 2 + . . . + 1 n ! x n + R n ( x ) \sum_{i=0}^{\infty}\frac{1}{i!}x^i = 1+x+\frac{1}{2!}x^2+...+\frac{1}{n!}x^n+R_n(x) i=0i!1xi=1+x+2!1x2+...+n!1xn+Rn(x)
      l n ( 1 + x ) ln(1+x) ln(1+x) x ∈ ( − 1 , 1 ] x\in(-1,1] x(1,1] ∑ i = 0 ∞ ( − 1 ) i ( i + 1 ) x i + 1 = x − 1 2 x 2 + . . . + ( − 1 ) n ( n + 1 ) x n + 1 + R n ( x ) \sum_{i=0}^{\infty}\frac{(-1)^i}{(i+1)}x^{i+1} = x-\frac{1}{2}x^2+...+\frac{(-1)^n}{(n+1)}x^{n+1}+R_n(x) i=0(i+1)(1)ixi+1=x21x2+...+(n+1)(1)nxn+1+Rn(x)
      l n 1 ( 1 − x ) ln\cfrac{1}{(1-x)} ln(1x)1 x ∈ [ − 1 , 1 ) x\in[-1,1) x[1,1) ∑ i = 0 ∞ x i i = x + x 2 2 + . . . + x n n + R n ( x ) \sum_{i=0}^{\infty}\cfrac{x^i}{i} = x+\cfrac{x^2}{2}+...+\cfrac{x^n}{n}+R_n(x) i=0ixi=x+2x2+...+nxn+Rn(x)
      s i n x sinx sinx R R R ∑ i = 0 ∞ ( − 1 ) i ( 2 i + 1 ) ! x 2 i + 1 = x − 1 3 ! x 3 + . . . + ( − 1 ) n ( 2 n + 1 ) ! x 2 n + 1 + R 2 n + 3 ( x ) \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i+1)!}x^{2i+1} = x-\frac{1}{3!}x^3+...+\frac{(-1)^n}{(2n+1)!}x^{2n+1}+R_{2n+3}(x) i=0(2i+1)!(1)ix2i+1=x3!1x3+...+(2n+1)!(1)nx2n+1+R2n+3(x)
      c o s x cosx cosx R R R ∑ i = 0 ∞ ( − 1 ) i ( 2 i ) ! x 2 i = 1 − 1 2 ! x 2 + . . . + ( − 1 ) n ( 2 n ) ! x 2 n + R 2 n + 2 ( x ) \sum_{i=0}^{\infty}\frac{(-1)^i}{(2i)!}x^{2i} = 1-\frac{1}{2!}x^2+...+\frac{(-1)^n}{(2n)!}x^{2n}+R_{2n+2}(x) i=0(2i)!(1)ix2i=12!1x2+...+(2n)!(1)nx2n+R2n+2(x)
      1 1 − x \cfrac{1}{1-x} 1x1 x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) ∑ i = 0 ∞ x i = 1 + x + x 2 + . . . \sum_{i=0}^{\infty}x^i = 1+x+x^2+... i=0xi=1+x+x2+...
      ( 1 + x ) 1 2 (1+x)^{\frac{1}{2}} (1+x)21 x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) 1 + 1 2 x − 1 8 x 2 + 1 16 x 3 . . . 1+\frac{1}{2}x-\frac{1}{8}x^2+\frac{1}{16}x^3... 1+21x81x2+161x3...
      ( 1 + x ) − 1 2 (1+x)^{-\frac{1}{2}} (1+x)21 x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) 1 − 1 2 x + 3 8 x 2 − 5 16 x 3 . . . 1-\frac{1}{2}x+\frac{3}{8}x^2-\frac{5}{16}x^3... 121x+83x2165x3...
      ( 1 + x ) − 2 (1+x)^{-2} (1+x)2 x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) 1 − 2 x + 3 x 2 − 4 x 3 + . . . 1-2x+3x^2-4x^3+... 12x+3x24x3+...
      t a n x tanx tanx x 2 < π 2 4 x^2<\frac{\pi^2}{4} x2<4π2 ∑ i = 1 ∞ ( − 4 ) i ( 1 − 4 i ) ( 2 i ) ! B 2 i x 2 i − 1 = x + 1 3 x 3 + 2 15 x 5 + . . . \sum_{i=1}^{\infty}\frac{(-4)^i(1-4^i)}{(2i)!}B_{2i}x^{2i-1} = x+\frac{1}{3}x^3+\frac{2}{15}x^{5}+... i=1(2i)!(4)i(14i)B2ix2i1=x+31x3+152x5+...
      c o t x cotx cotx 0 < x < π 0<x<\pi 0<x<π ∑ i = 1 ∞ ( − 4 ) i ( 2 i ) ! B 2 i x 2 i − 1 = 1 x − 1 3 x 3 − 1 45 x 5 − . . . \sum_{i=1}^{\infty}\frac{(-4)^i}{(2i)!}B_{2i}x^{2i-1} = \frac{1}{x}-\frac{1}{3}x^3-\frac{1}{45}x^{5}-... i=1(2i)!(4)iB2ix2i1=x131x3451x5...
      s e c x secx secx R R R ∑ i = 1 ∞ ( − 1 ) i ( 2 i ) ! E 2 i x 2 i = 1 + 1 2 x 2 + 5 24 x 4 + . . . \sum_{i=1}^{\infty}\frac{(-1)^i}{(2i)!}E_{2i}x^{2i} = 1+\frac{1}{2}x^2+\frac{5}{24}x^{4}+... i=1(2i)!(1)iE2ix2i=1+21x2+245x4+...
      a r c s i n x arcsinx arcsinx x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) ∑ i = 0 ∞ ( 2 i ) ! ( 2 i + 1 ) 4 i ( i ! ) 2 x 2 i + 1 = x + 1 6 x 3 + 3 40 x 5 + . . . \sum_{i=0}^{\infty}\frac{(2i)!}{(2i+1)4^i(i!)^2}x^{2i+1} = x+\frac{1}{6}x^3+\frac{3}{40}x^{5}+... i=0(2i+1)4i(i!)2(2i)!x2i+1=x+61x3+403x5+...
      a r c t a n x arctanx arctanx x ∈ [ − 1 , 1 ] x\in[-1,1] x[1,1] ∑ i = 0 ∞ ( − 1 ) i 2 i + 1 x 2 i + 1 = x − 1 3 x 3 + 1 5 x 5 + . . . \sum_{i=0}^{\infty}\frac{(-1)^i}{2i+1}x^{2i+1} = x-\frac{1}{3}x^3+\frac{1}{5}x^{5}+... i=02i+1(1)ix2i+1=x31x3+51x5+...
      s h x shx shx R R R ∑ i = 0 ∞ 1 ( 2 i + 1 ) ! x 2 i + 1 = x + 1 3 ! x 3 + 1 5 ! x 5 + . . . \sum_{i=0}^{\infty}\frac{1}{(2i+1)!}x^{2i+1} = x+\frac{1}{3!}x^3+\frac{1}{5!}x^{5}+... i=0(2i+1)!1x2i+1=x+3!1x3+5!1x5+...
      c h x chx chx R R R ∑ i = 0 ∞ 1 ( 2 i ) ! x 2 i = 1 + 1 2 ! x 2 + 1 4 ! x 4 + . . . \sum_{i=0}^{\infty}\frac{1}{(2i)!}x^{2i} = 1+\frac{1}{2!}x^2+\frac{1}{4!}x^{4}+... i=0(2i)!1x2i=1+2!1x2+4!1x4+...
      t h x thx thx x 2 < π 2 4 x^2<\frac{\pi^2}{4} x2<4π2 ∑ i = 1 ∞ 4 i ( 4 i − 1 ) ( 2 i ) ! B 2 i x 2 i − 1 = x − 1 3 x 3 + 2 15 x 5 + . . . \sum_{i=1}^{\infty}\frac{4^i(4^i-1)}{(2i)!}B_{2i}x^{2i-1} = x-\frac{1}{3}x^3+\frac{2}{15}x^{5}+... i=1(2i)!4i(4i1)B2ix2i1=x31x3+152x5+...
      a r c s h x arcshx arcshx x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) ∑ i = 0 ∞ ( − 1 ) i ( 2 i ) ! ( 2 i + 1 ) 4 i ( i ! ) 2 x 2 i + 1 = x − 1 6 x 3 + 3 40 x 5 + . . . \sum_{i=0}^{\infty}\frac{(-1)^i(2i)!}{(2i+1)4^i(i!)^2}x^{2i+1} = x-\frac{1}{6}x^3+\frac{3}{40}x^{5}+... i=0(2i+1)4i(i!)2(1)i(2i)!x2i+1=x61x3+403x5+...
      a r c t h x arcthx arcthx x ∈ ( − 1 , 1 ) x\in(-1,1) x(1,1) ∑ i = 0 ∞ 1 2 i + 1 x 2 i + 1 = x + 1 3 x 3 + 1 5 x 5 + . . . \sum_{i=0}^{\infty}\frac{1}{2i+1}x^{2i+1} = x+\frac{1}{3}x^3+\frac{1}{5}x^{5}+... i=02i+11x2i+1=x+31x3+51x5+...


  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值