5个条件判断一件事情是否发生,每个条件可能性只有2种(发生或者不发生),计算每个条件对这件事情发生的影响力。排列特征重要性模型的程序。
例一
在机器学习领域,排列特征重要性(Permutation Feature Importance)是一种评估特征对模型性能影响的方法。其基本思想是打乱某个特征的值,观察模型性能的变化程度。如果性能显著下降,说明该特征对模型预测很重要;如果性能变化不大,则说明该特征不那么重要。
以下是一个使用排列特征重要性来评估5个条件对事件发生影响力的Python程序示例。这个程序将使用随机森林分类器,并通过打乱每个特征的值来测量其对模型性能的影响。
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.inspection import permutation_importance
from sklearn.model_selec