U2Net——U-Net套U-Net——套娃式图像分割算法

1 相关参考

论文名称: U2-Net: Goging Deeper with Nested U-Structure for Salient Object Detetion
论文地址: https://arxiv.org/abs/2005.09007
官方源码: https://github.com/xuebinqin/U-2-Net
参考代码: Pytorch UNet
参考博客: https://blog.csdn.net/qq_37541097/article/details/126255483
参考视频: bilibili 我为霹导举大旗

建议大家可以先看霹导的原理讲解视频和代码讲解视频,代码写的真的太优雅了,以下内容作为自己对重点的记录和一些代码中的修改!

2 U 2 − N e t U^2-Net U2Net 网络结构

整体结构:
在这里插入图片描述

保留了原始的U-Net网络结构,只是将每一个Block的内部结构做了很大的调整,换成了一个U-Net,同时针对整个结构的输出做出调整,在训练时,给六个输出进行loss计算,在测试时只得到一个输出。

Block结构RSU:
在这里插入图片描述

这里Block,除了输入和输出的通道会发生变化,在中间层进行卷积时,使用的通道数都是Mid_channels,同时在最下层的卷积中,使用的是膨胀卷积。 这里的L=7,指的是RSU-7,是En_1和Dn_1的内部结构,在前四层中,都是使用的是RSU结构;

在后面的两层中,使用的是RSU-4F,其中的卷积层使用的是膨胀卷积,避免因为深度太深,导致图像尺寸太小,丢失特征,RSU-4F结构如下:
RSU-4F:
在这里插入图片描述

这里向下使用了两层的膨胀卷积,进行特征恢复,避免因为网络深度太深,导致特征丢失的问题!

损失函数:
网络在训练的时候,是对六个输出分别和GT进行BCE(二值交叉熵)计算,然后对损失求和进行反向传播,公式如下:
L = ∑ m = 1 M w side  ( m ) l side  ( m ) + w fuse  l fuse  L=\sum_{m=1}^{M} w_{\text {side }}^{(m)} l_{\text {side }}^{(m)}+w_{\text {fuse }} l_{\text {fuse }} L=m=1Mwside (m)lside (m)+wfuse lfuse 

在本网络中,前面一部分是六个输出和GT的损失,第二部分是最后的融合图像和GT的损失,代码如下:

import torch
import torch.nn as nn
from torch.nn import functional as F
class U2criterion(nn.Module):
    def __init__(self):
        super(U2criterion, self).__init__()
    
    def forward(self, inputs, target):
        losses = [F.binary_cross_entropy_with_logits(inputs[i], target) for i in range(len(inputs))]
        total_loss = sum(losses)
        return total_loss

3 网络代码和测试

from typing import Union, List
import torch
import torch.nn as nn
import torch.nn.functional as F


class ConvBNReLU(nn.Module):
    def __init__(self, in_ch, out_ch, kernel_size=3, dilation=1):
        super().__init__()

        padding = kernel_size // 2 if dilation == 1 else dilation  # 保持图像大小不变
        self.conv = nn.Sequential(
            nn.Conv2d(in_ch, out_ch, kernel_size=kernel_size, padding=padding, dilation=dilation, bias=False),  # 因为后面有BN,bias不起作用
            nn.BatchNorm2d(out_ch),
            nn.ReLU(inplace=True) 
        )
    def forward(self, x):
        return self.conv(x)

class DownConvBNReLu(ConvBNReLU):
    def __init__(self, in_ch, out_ch, kernel_size=3, dilation=1, flag=True):
        super().__init__(in_ch, out_ch, kernel_size, dilation)

        self.down_flag = flag

    def forward(self, x):
        if self.down_flag:
            x = F.max_pool2d(x, kernel_size=2, stride=2, ceil_mode=True)

        return self.conv(x)


class UpConvBNReLU(ConvBNReLU):
    def __init__(self, in_ch, out_ch, kernel_size=3, dilation=1, flag=True):
        super().__init__(in_ch, out_ch, kernel_size, dilation)
        
        self.up_flag = flag
    
    def forward(self, x1, x2): # x1为下面传入的, x2为左边传入的
        if self.up_flag:
            x1 = F.interpolate(x1, size=x2.shape[2:], mode="bilinear", align_corners=False)
        x = torch.cat([x1, x2], dim=1)
        return self.conv(x)

class RSU(nn.Module):
    def __init__(self, height, in_ch, mid_ch, out_ch):
        super().__init__()
        assert height >= 2
        self.conv_in = ConvBNReLU(in_ch, out_ch)  # 这个是不算在height上的

        encode_list = [DownConvBNReLu(out_ch, mid_ch, flag=False)]
        decode_list = [UpConvBNReLU(mid_ch*2, mid_ch, flag=False)]

        for i in range(height-2): # 含有上下采样的模块
            encode_list.append(DownConvBNReLu(mid_ch, mid_ch))
            decode_list.append(UpConvBNReLU(mid_ch*2, mid_ch if i < height-3 else out_ch)) # 这里最后的decode的输出是out_ch

        encode_list.append(ConvBNReLU(mid_ch, mid_ch, dilation=2))
        self.encode_modules = nn.ModuleList(encode_list)
        self.decode_modules = nn.ModuleList(decode_list)
    
    def forward(self, x):
        x_in = self.conv_in(x)

        x = x_in
        encode_outputs = []
        for m in self.encode_modules:
            x = m(x)
            encode_outputs.append(x)
        
        x = encode_outputs.pop() # 这是移除list最后的一个数据,并且将该数据赋值给x,这里的x是含有空洞卷积的输出
        for m  in self.decode_modules:
            x2 = encode_outputs.pop() # 这里是倒数第二深的输出,x表示下面的,x2表示左边的
            x = m(x, x2)  # 将下面的,和左边的一起传入到上卷积中
        return x + x_in  # 这里是最上面一层进行相加

class RSU4F(nn.Module):
    def __init__(self, in_ch, mid_ch, out_ch):
        super().__init__()
        self.conv_in = ConvBNReLU(in_ch, out_ch)

        self.encode_modules = nn.ModuleList([ConvBNReLU(out_ch, mid_ch),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=2),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=4),
                                             ConvBNReLU(mid_ch, mid_ch, dilation=8)])
        
        self.decode_modules = nn.ModuleList([ConvBNReLU(mid_ch*2, mid_ch, dilation=4),
                                             ConvBNReLU(mid_ch*2, mid_ch, dilation=2),
                                             ConvBNReLU(mid_ch*2, out_ch)])
    
    def forward(self, x):
        x_in = self.conv_in(x)

        x = x_in
        encode_outputs = []
        for m in self.encode_modules:
            x = m(x)
            encode_outputs.append(x)
        
        x = encode_outputs.pop()
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = m(torch.cat([x, x2], dim=1))
        
        return x+x_in

class U2Net(nn.Module):
    def __init__(self, cfg, out_ch=1):
        super().__init__()
        
        assert "encode" in cfg
        assert "decode" in cfg

        self.encode_num = len(cfg["encode"])

        encode_list = []
        side_list = []

        for c in cfg["encode"]:
            # [height, in_ch, mid_ch, out_ch, RSU4F, side]
            assert len(c) == 6
            encode_list.append(RSU(*c[:4]) if c[4] is False else RSU4F(*c[1:4]))  # 这里的*是将列表解开为单独的数值,这样才能传入到函数中

            if c[5] is True:
                side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))
        self.encode_modules = nn.ModuleList(encode_list)

        decode_list = []
        for c in cfg["decode"]:
            assert len(c) == 6
            decode_list.append(RSU(*c[:4]) if  c[4] is False else RSU4F(*c[1:4]))

            if c[5] is True:
                side_list.append(nn.Conv2d(c[3], out_ch, kernel_size=3, padding=1))
        self.decode_modules = nn.ModuleList(decode_list)
        self.side_modules = nn.ModuleList(side_list)
        self.out_conv = nn.Conv2d(self.encode_num*out_ch, out_ch, kernel_size=1)  # 这里是针对cat后的结果进行卷积,得到最后的out_ch=1

    def forward(self, x):
        _, _, h, w = x.shape

        encode_outputs = []
        for i, m in enumerate(self.encode_modules):
            x = m(x)
            encode_outputs.append(x)
            if i != self.encode_num - 1:  # 除了最后一个encode_block不用下采样,其余每一个block都需要下采样
                x = F.max_pool2d(x, kernel_size=2, stride=2, ceil_mode=True)
        
        x = encode_outputs.pop()
        decode_outputs = [x]
        for m in self.decode_modules:
            x2 = encode_outputs.pop()
            x = F.interpolate(x, size=x2.shape[2:], mode="bilinear", align_corners=False)
            x = m(torch.cat([x, x2], dim=1))
            decode_outputs.insert(0, x) #这里是保证了从上到下的decode层的输出,在列表中的遍历是从0到5

        side_outputs = []
        for m in self.side_modules:
            x = decode_outputs.pop()
            x = F.interpolate(m(x), size=[h,w], mode="bilinear", align_corners=False)
            side_outputs.insert(0, x)
        x = self.out_conv(torch.cat(side_outputs, dim=1))

        if self.training:   # 在训练的时候,需要将6个输出都拿出来进行loss计算,
            return [x] + side_outputs
        else:  # 非训练时,直接sigmoid后的数据
            return torch.sigmoid(x)
        # return torch.sigmoid(x)

def u2net_full(in_ch=3, out_ch=1):
    cfg = {
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "encode": [[7, in_ch, 32, 64, False, False],      # En1
                   [6, 64, 32, 128, False, False],    # En2
                   [5, 128, 64, 256, False, False],   # En3
                   [4, 256, 128, 512, False, False],  # En4
                   [4, 512, 256, 512, True, False],   # En5
                   [4, 512, 256, 512, True, True]],   # En6
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "decode": [[4, 1024, 256, 512, True, True],   # De5
                   [4, 1024, 128, 256, False, True],  # De4
                   [5, 512, 64, 128, False, True],    # De3
                   [6, 256, 32, 64, False, True],     # De2
                   [7, 128, 16, 64, False, True]]     # De1
    }

    return U2Net(cfg, out_ch)

def u2net_lite(in_ch=3, out_ch=1):
    cfg = {
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "encode": [[7, in_ch, 16, 64, False, False],  # En1
                   [6, 64, 16, 64, False, False],  # En2
                   [5, 64, 16, 64, False, False],  # En3
                   [4, 64, 16, 64, False, False],  # En4
                   [4, 64, 16, 64, True, False],  # En5
                   [4, 64, 16, 64, True, True]],  # En6
        # height, in_ch, mid_ch, out_ch, RSU4F, side
        "decode": [[4, 128, 16, 64, True, True],  # De5
                   [4, 128, 16, 64, False, True],  # De4
                   [5, 128, 16, 64, False, True],  # De3
                   [6, 128, 16, 64, False, True],  # De2
                   [7, 128, 16, 64, False, True]]  # De1
    }
    return U2Net(cfg, out_ch)


# net = u2net_full(1,1)
# x = torch.randn(16,1,256,256)
# net.eval()
# print(net(x))

  1. 这里u2net_full指的是完整的U2Net,u2net_lite,指的是轻量级的U2Net,这两个的唯一区别是,模块中的通道数不同;
  2. 指定网络的时候,需要指定网络输入通道和输出通道,这里的修改是为了自己使用网络的便利,原始网络中,默认输入通道是3
  3. 轻量级模型的参数是完整性模型参数的1/40

贴一个网络参数计算代码:

def count_parameters(model):  # 传入的是模型实例对象
    params = [p.numel() for p in model.parameters() if p.requires_grad]
#     for item in params:
#         print(f'{item:>16}')   # 参数大于16的展示
    print(f'________\n{sum(params):>16}')  # 大于16的进行统计,可以自行修改

网络测试:
在这里插入图片描述
在这里插入图片描述
再说一下,霹导写的代码真的很优雅,可以去看霹导的代码讲解和网络结构讲解!!

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Philo`

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值