深度学习框架的比较(MXNet Caffe TensorFlow Torch Theano

本文对比了五个深度学习框架:MXNet、Caffe、TensorFlow、Torch和Theano。MXNet结合了命令式和声明式编程,擅长内存管理和优化。Caffe在计算机视觉领域广泛应用,但灵活性不足。TensorFlow是Google的深度学习框架,支持RNN和强大的可视化工具,但速度较慢。Torch以其灵活性和速度受到青睐,但接口为Lua。Theano灵活且适合学术研究,但编译速度慢。
摘要由CSDN通过智能技术生成

首先给大家分享一个巨牛巨牛的人工智能教程,是我无意中发现的。教程不仅零基础,通俗易懂,而且非常风趣幽默,还时不时有内涵段子,像看小说一样,哈哈~我正在学习中,觉得太牛了,所以分享给大家!点这里可以跳转到教程

               

1. 基本概念

1.1 MXNet相关概念

    深度学习目标:如何方便的表述神经网络,以及如何快速训练得到模型

    CNN(卷积层):表达空间相关性(学表示)

    RNN/LSTM:表达时间连续性(建模时序信号)
    命令式编程(imperative programming):嵌入的较浅,其中每个语句都按原来的意思执行,如numpy和Torch就是属于这种

    声明式语言(declarative programing):嵌入的很深,提供一整套针对具体应用的迷你语言。即用户只需要声明要做什么,而具体执行则由系统完成。这类系统包括Caffe,Theano和TensorFlow。命令式编程显然更容易懂一些,更直观一些,但是声明式的更利于做优化,以及更利于做自动求导,所以都保留。  

  浅嵌入,命令式编程 深嵌入,声明式编程
如何执行a=b+1 需要b已经被赋值。立即执行加法,将结果保存在a中。 返回对应的计算图(computation graph),我们可以之后对b进行赋值,然后再执行加法运算
优点 语义上容易理解,灵活,可以精确控制行为。通常可以无缝的和主语言交互,方便的利用主语言的各类算法,工具包,bug和性能调试器。 在真正开始计算的时候已经拿到了整个计算图,所以我们可以做一系列优化来提升性能。实现辅助函数也容易,例如对任何计算图都提供forward和backward函数,对计算图进行可视化,将图保存到硬盘和从硬盘读取。
缺点 实现统一的辅助函数和提供整体优化都很困难。 很多主语言的特性都用不上。某些在主语言中实现简单,但在这里却经常麻烦,例如if-else语句 。debug也不容易,例如监视一个复杂
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值