基于深度学习(Unet和SwinUnet)的医学图像分割系统设计与实现:超声心脏分割

基于深度学习的医学图像分割系统设计与实现

摘要

本文提出了一种基于深度学习的医学图像分割系统,该系统采用U-Net和Swin-Unet作为核心网络架构,实现了高效的医学图像分割功能。系统包含完整的训练、验证和推理流程,并提供了用户友好的图形界面。实验结果表明,该系统在医学图像分割任务中表现出色,能够准确识别不同组织结构,为临床诊断提供有力支持。

关键词:医学图像分割,深度学习,U-Net,Swin-Unet,PyTorch

1. 引言

医学图像分割是计算机辅助诊断系统中的关键技术,能够自动识别和分割医学图像中的感兴趣区域。传统分割方法往往依赖手工特征和先验知识,而深度学习方法能够自动学习图像特征,显著提高了分割精度。本文设计并实现了一个完整的医学图像分割系统,具有以下特点:

  1. 支持多种网络架构选择(U-Net和Swin-Unet)

  2. 完整的训练、验证和评估流程

  3. 用户友好的图形界面

  4. 支持CT图像的特殊处理

  5. 全面的性能评估指标

2. 系统设计

2.1 整体架构

系统由三个主要模块组成:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

听风吹等浪起

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值