论文阅读:Vision Mamba: A Comprehensive Survey and Taxonomy

文章简介

  • 本文对VMamba进行了较为全面的综述,重点介绍了 Mamba 在各种可视化任务和数据类型中的应用,并探讨了它的发展变化

思维导图
在这里插入图片描述

Overview

由于自然语言与计算机视觉已逐渐形成融合趋势,将性能卓越的大型语言模型(LLM)Mamba 扩展到计算机视觉是一个极具吸引力的方向。Vim 是第一个处理密集预测任务的纯 SSM 模型,也是第一个将 SSM 应用于视觉领域通用背骨的模型。该框架解决了 Mamba 在处理图像序列时遇到的两个难题:建模的单一性和位置感知的缺乏。VMamba 提出了一种交叉扫描策略,以弥补一维阵列和二维序列扫描之间的差距。Mamba-ND 旨在将 Mamba 架构扩展到多维数据上的各种视觉任务,包括一维、二维和三维数据,以及更多其他视觉任务,如图像复原、红外小目标检测、点云等以及视频建模。这些成果发掘了曼巴的潜力,在视觉领域大有可为。

人们在 Mamba 架构的各个方面开展了大量工作, 以探索 SSM 在垂直域视觉任务中的应用。我们根据下游应用场景或任务对 Mamba 模型进行了分类,如下表所示。

主要包括一般视觉任务、多模态任务和垂直领域任务,其中垂直领域任务包括遥感图像分析和医学图像分析,一般视觉任务包括高级/中级视觉、低级视觉、三维视觉和多类型数据流。由于很难区分 Mamba 在高级视觉和中级视觉中的目标,我们将它们归为一类。低级视觉的典型任务包括图像处理、图像修复和图像生成。用于三维视觉的 Mamba 主要指用于三维视觉识别的点云分析。
请添加图片描述

SSM基本架构和原理

本章略,每篇讲Mamba的文章都会在相关基础知识的部分提一嘴Vanilla Mamba(原始Mamba模型)的结构,具体会在另一篇文章中进行详尽的解读和总结。

只需要知道:选择性机制使 Mamba 具备线性计算复杂度和长程依赖关系建模能力,硬件感知状态扩展则使其具有内存效率。凭借这两项关键技术,Mamba 在各种应用中展现出超越以往状态空间模型的巨大潜力。

一般视觉任务中的Mamba

本节回顾了 Mamba 及其变体在普通视觉中的应用, 包括高级/中级视觉、低级视觉和 3D 视觉。在接下来的小节中,我们将介绍针对每项任务重新设计的 Mamba 变体。考虑到选择性扫描策略在视觉任务中的重要性,我们在图 3 中进一步总结了现有的经典二维扫描机制。

请添加图片描述

用于高级/中级视觉的Mamba

使用Mamba的Vision Backbone

Mamba在语言建模场景中的成功促使研究人员利用先进的Mamba模型设计通用、高效的视觉主干。

Vim

Vim 提出了第一个纯基于 SSM 的模型来处理密集型预测任务。作者认为 SSM 在视觉应用中面临两大挑战:建模单向性和缺乏位置感知。为此,Vim 采用了双向 SSM 和位置嵌入技术。

如图 5 所示,为了处理视觉任务,它首先将多维图像 t ∈ R H × W × C t ∈ R^{H×W×C} tRH×W×C 转换为扩展的二维块 x p ∈ R J × ( P 2 ⋅ C ) x_p ∈ R^{J×(P^2·C)} xpRJ×(P2C) ,其中 ( H , W ) (H, W) (H,W) 是输入图像的大小,C 是通道数,P 是图像块的大小。与 Transformer 的位置嵌入方法类似,Vim 将 x p x_p

<think>好的,我现在需要处理用户关于Siamese Mamba Network的问题。用户可能已经了解了一些关于Siamese Networks的基础知识,比如引用中提到的传统Siamese CNN、LSTM Siamese网络以及它们在签名验证、人脸识别中的应用。现在用户想知道如何实现Siamese Mamba Network的架构,或者它的概述。 首先,我需要确认什么是Mamba Network。根据我的知识,Mamba是一种基于状态空间模型(SSM)的新型架构,可能用于处理长序列数据,类似于Transformer但更高效。接下来,Siamese Mamba Network应该是将Mamba作为特征提取器,结合Siamese网络的结构,用于比较两个输入的相似性。 用户提供的引用中提到了不同的Siamese架构,比如CNN、LSTM,还有Gated Siamese CNN用于行人重识别。这可能意味着Siamese Mamba Network可能在处理序列数据(如文本、时间序列)方面有优势,或者需要结合Mamba的长序列处理能力。 接下来,我需要构建Siamese Mamba Network的实现概述。可能需要以下步骤:输入处理、Mamba编码器、特征融合、相似度计算。同时要考虑如何共享权重,因为Siamese网络的两个分支通常共享参数。 可能的问题包括如何设计Mamba层,如何处理输入的对,以及损失函数的选择,比如对比损失或三元组损失。此外,还需要参考现有的Mamba实现,比如在GitHub上的项目,或者相关论文,但目前关于Siamese Mamba的具体资料可能较少,需要结合传统Siamese网络和Mamba的特点进行推断。 另外,用户可能关心应用场景,比如是否适用于需要长序列对比的任务,如文档相似性、生物序列分析等。在实现时,可能需要使用PyTorch或JAX框架,因为Mamba的实现通常在这些框架中有支持。 最后,需要验证这些信息是否正确,是否有相关研究支持。由于Mamba较新,可能没有太多现成的Siamese Mamba案例,因此需要基于现有知识合理推测架构,并建议用户查阅最新文献或代码库以获取详细信息。</think>### Siamese Mamba Network架构概述 Siamese Mamba Network是一种结合**状态空间模型(Mamba)**与**孪生神经网络(Siamese Network)**的新型架构,旨在处理长序列数据的相似性比对任务。其核心是通过共享权重的Mamba模块提取输入特征,再通过相似性度量函数(如余弦相似度)比较特征向量[^3][^4]。 #### 架构实现关键步骤 1. **输入处理** 输入为两个序列(如文本、时间序列或生物序列),需对齐长度或通过填充/截断处理。 2. **Mamba编码器** 使用共享权重的Mamba层作为特征提取器,例如: $$ \text{Feature}_A = \text{Mamba}(X_A), \quad \text{Feature}_B = \text{Mamba}(X_B) $$ 其中$X_A$和$X_B$为输入对,Mamba层利用选择性状态空间机制捕捉长程依赖[^5]。 3. **特征融合与相似度计算** 对特征向量进行池化(如均值池化)后计算相似度: $$ \text{Similarity} = \frac{\text{Feature}_A \cdot \text{Feature}_B}{\|\text{Feature}_A\| \cdot \|\text{Feature}_B\|} $$ 使用对比损失(Contrastive Loss)或三元组损失(Triplet Loss)优化模型。 #### 代码框架示例(PyTorch伪代码) ```python import torch from mamba_ssm import Mamba class SiameseMamba(torch.nn.Module): def __init__(self, input_dim, hidden_dim): super().__init__() self.mamba = Mamba(d_model=input_dim, d_state=hidden_dim) # 共享权重的Mamba层 def forward(self, x1, x2): feat1 = self.mamba(x1) # 输入维度: (batch, seq_len, input_dim) feat2 = self.mamba(x2) feat1 = torch.mean(feat1, dim=1) # 序列池化 feat2 = torch.mean(feat2, dim=1) similarity = torch.cosine_similarity(feat1, feat2, dim=-1) return similarity ``` #### 应用场景 1. **长文本相似度比对**(如论文查重) 2. **基因序列匹配**(处理超长DNA/RNA序列) 3. **传感器时序信号分析**(故障检测中的异常模式对比)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值