Z域与S域稳定和因果的条件及零极点分布特点
Z域:
因果性:其系统函数H(z)的极点分布在z平面上一个半径有限的圆内。
稳定性:因果系统的系统函数H(z)收敛于包含单位圆,即系统函数在单位圆上是收敛的。
S域:
因果性:收敛域位于极点右侧为因果。(即在无穷远处没有极点的系统是因果的,理解:此时级数的上限可以写成∞,即序列可以向后延伸,即为因果);或可说,系统函数分子阶数高于分母则为因果。
稳定性:H(S)极点都在左半平面(此时h(t)呈衰减趋势)。
Z域与S域稳定和因果的条件及零极点分布特点
Z域:
因果性:其系统函数H(z)的极点分布在z平面上一个半径有限的圆内。
稳定性:因果系统的系统函数H(z)收敛于包含单位圆,即系统函数在单位圆上是收敛的。
S域:
因果性:收敛域位于极点右侧为因果。(即在无穷远处没有极点的系统是因果的,理解:此时级数的上限可以写成∞,即序列可以向后延伸,即为因果);或可说,系统函数分子阶数高于分母则为因果。
稳定性:H(S)极点都在左半平面(此时h(t)呈衰减趋势)。