幂级数——函数的幂级数展开

一.泰勒级数

若函数f在点x_0的某邻域上存在直至n+1阶的连续导数,则f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+\underbrace{\frac{f^{(n+1)}(x_0)}{(n+1)!}(x-x_0)^{n+1}}_{R_n(x)}.R_n(x)拉格朗日型余项

如果函数f在x_0处存在任意阶的导数,这时称级数f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+...为函数f在x_0处的泰勒级数

定理11

设f在点x_0具有任意阶导数,那么f在区间(x_0-r,x_0+r)上等于它的泰勒级数的和函数的充分条件:对一切满足不等式\left | x-x_0 \right |<r的x,有\lim_{n\to \infty}R_n(x)=0,这里的R_n(x)是f在x_0处的泰勒公式余项。

如果f能在点x_0的某邻域上等于其泰勒级数的和函数,则称函数f在点x_0的这一领域上可以展开成泰勒级数,并称等式f(x)=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+...+\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n+...的右边为f在x_0处的泰勒展开式,或称幂级数展开式

函数在x_0=0初的展开式f(0)+\frac{f'(0)}{1!}(x)+\frac{f''(0)}{2!}(x)^2+...+\frac{f^{(n)}(0)}{n!}(x)^n+...称为f的麦克劳林级数

二.初等函数的幂级数展开式

(1)k级多项式函数f(x)=c_0+c_1x+c_2x^2+...+c_kx^k的展开式是其本身。

(2)e^x=1+\frac{1}{1!}x+\frac{1}{2!}x^2+...+\frac{1}{n!}x^n+...,x\in (-\infty ,+\infty)

(3)\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+...+(-1)^{n+1}\frac{x^{2n-1}}{(2n-1)!}+...,x\in (-\infty,+\infty)

(4)\cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+...+(-1)^{n}\frac{x^{2n}}{(2n)!}+...,x\in (-\infty,+\infty)

(5)\ln (1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...+(-1)^{n-1}\frac{x^n}{n}+...,x\in (-1,1]

(6)(1+x)^\alpha =1+\alpha x+\frac{\alpha (\alpha -1)}{2!}x^2+...+\frac{\alpha (\alpha -1)...(\alpha -n+1)}{n!}x^n+...,x\in (-1,1)

\alpha \leqslant -1时,收敛域为(-1,1);

-1< \alpha < 0时,收敛域为(-1,1 ];

\alpha > 0时,收敛域为[ -1,1 ];

 

  • 9
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值