二维图像旋转的坐标公式推导

二维图像旋转后的坐标公式推导:
在这里插入图片描述

综上,图像顺时针和逆时针旋转的矩阵分别为:
在这里插入图片描述

在这里插入图片描述

对于此处红色字体的理解部分,有误解,图像没有翻转。
这个坐标转换只是让图像每个位置在某一坐标系的表达,转换到另一个坐标系上的表达,也就是通过坐标转换可以得到某一位置在两个坐标系的表达,图像上点与点之间的相对位置关系并没有发生改变,下面用一个较笨的方法说明这方面的问题。
在这里插入图片描述

从上图可以发现,图像中由A,B组成的这条线,经两种坐标系变换后,看似方向没有变化,而实际上:
直角坐标系转换到图像坐标系时,线的角度没变;
直角坐标系转换到下面的坐标系时,线的角度变成了原来角度的余角(相加为90度)
因为角度可以看作与x轴方向的较小的夹角,所以转换成第二种坐标系时,某条线的角度变了,但图像没有变化

下面总结了图像旋转的过程。
在这里插入图片描述

关于图像旋转算法原理可以参照网站:
https://blog.csdn.net/liyuan02/article/details/6750828
(关于计算机和数学上坐标系的定义有所不同,这在程序编写时需要特别注意)

类比二维旋转,可以拓展到三维旋转(分别是绕x轴,y轴,z轴),公式如下:
在这里插入图片描述

  • 1
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
二维Newton-Cotes公式是一种数值积分方法,用于计算二维函数的积分。它是通过对二维积分区域进行均匀剖分,然后在每个小矩形上应用一维Newton-Cotes公式得到的。 假设要计算的二维函数为$f(x,y)$,积分区域为$[a,b] \times [c,d]$,将其均匀剖分为$m$个小矩形,每个小矩形的宽度为$h=\frac{b-a}{m}$,高度为$k=\frac{d-c}{n}$。则有: $$\iint_{[a,b]\times[c,d]}f(x,y)dxdy \approx \sum_{i=0}^{m-1}\sum_{j=0}^{n-1}\int_{x_i}^{x_{i+1}}\int_{y_j}^{y_{j+1}}f(x,y)dxdy$$ 其中,$x_i=a+ih$,$y_j=c+jk$。 我们可以在每个小矩形上应用一维Newton-Cotes公式,得到二维Newton-Cotes公式: $$\iint_{[a,b]\times[c,d]}f(x,y)dxdy \approx \sum_{i=0}^{m-1}\sum_{j=0}^{n-1}\int_{x_i}^{x_{i+1}}\int_{y_j}^{y_{j+1}}f(x,y)dxdy \approx \sum_{i=0}^{m-1}\sum_{j=0}^{n-1}w_{m,i}w_{n,j}\sum_{k=0}^{m}\sum_{l=0}^{n}f(x_i+kh,y_j+lk)$$ 其中,$w_{m,i}$和$w_{n,j}$是一维Newton-Cotes公式中对应的权重。 具体而言,二维Newton-Cotes公式可以按照以下方式计算: 1. 设定剖分参数$m$和$n$,计算小矩形的宽度$h$和高度$k$; 2. 计算一维Newton-Cotes公式中对应的权重$w_{m,i}$和$w_{n,j}$; 3. 对每个小矩形,按照一维Newton-Cotes公式的方式计算其积分值,并将所有小矩形的积分值求和,得到最终的二维积分值。 需要注意的是,二维Newton-Cotes公式的精度与剖分参数$m$和$n$有关,一般来说,增加$m$和$n$可以提高精度,但会增加计算量。因此,在实际应用中需要根据具体情况进行权衡。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值