二维平面内的坐标旋转变换

在做数值计算后处理中,需要对计算模型的边界数据进行坐标旋转,网上找到的公式大多是以原点为旋转中心点。因此这里直接考虑旋转中心点为一般坐标点的情况,将该部分内容作简单推导和整理。

如上图所示,以点M (a,b)为圆心将点N0(x0,y0)旋转到N1(x1,y1)。点N0与水平轴的夹角为α,从点N0到N1的旋转角度为β,角度均已逆时针方向为正,顺时针方向为负。根据三角形内边角关系有,

\left | MN_0 \right | = \frac{y_0 - b}{\sin \alpha} = \frac{x_0 - a}{\cos \alpha}

\left | MN_1 \right | = \frac{y_1 - b}{\sin (\alpha + \beta )} = \frac{x_1 - a}{\cos (\alpha + \beta)}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值