在大规模点云中,常用数据集的了解及对数据处理的模型算法

学习目标:

1.快速理解清楚常用的室内场景数据集特点。
2.简单介绍一些处理大规模点云数据时常用的深度学习模型和算法。

学习内容:

一、大型室内数据集的简单汇总

1、S3DIS (Stanford Large-scale 3D Indoor Spaces):
S3DIS 是由斯坦福大学计算机视觉实验室发布的,旨在促进室内场景理解的研究。它包含了多个室内环境的3D扫描,如住宅、办公室、教室等。每个场景都有详细的语义标注,标注了墙壁、地板、家具等室内元素。S3DIS 数据集支持多种任务,如语义分割、对象检测和场景重建。
2、ScanNet:
ScanNet 是一个由斯坦福大学和UC伯克利大学合作发布的室内场景数据集。它包含了1201个室内扫描,每个扫描都提供了点云、RGB图像、深度图和精确的语义标注。ScanNet 支持多种任务,包括语义分割、对象检测、场景理解和3D重建。数据集的多样性和标注质量使其成为室内场景理解研究的重要资源。
3、Semantic3D:
Semantic3D 是一个大规模的城市街道场景数据集,由德国斯图加特大学提供。它包含了15个城市和乡村街道的3D扫描,总共有4亿个点。这些场景由地面激光雷达扫描仪获取,提供了建筑物、道路、植被等的语义标注。Semantic3D 数据集适用于城市场景理解、自动驾驶和城市规划研究。
4、DALES (Dense Airborne LiDAR for Environmental Sensing):
DALES 数据集由德国航空航天中心(DLR)发布,包含了超过10平方公里的区域扫描,这些区域覆盖了多种地形,如森林、农田和城市。数据集提供了5百万个点,分为8个语义类别,如地面、建筑物、车辆等。DALES 适用于环境监测、土地覆盖分类和地形分析。
5、Toronto3D:
oronto3D 数据集由多伦多大学发布,包含了1公里长的市区道路点云数据,这些数据由车载激光雷达系统获取。数据集包含了8个语义类别,如道路、建筑物、车辆等。Toronto3D 数据集适用于城市场景的语义分割和对象检测研究,特别是在自动驾驶和智能交通系统领域。
6、Indoor Scene Understanding (ISU):
ISU 数据集由德国弗劳恩霍夫研究所发布,包含了室内场景的3D扫描,这些场景由激光雷达和相机共同扫描。数据集提供了详细的点云数据和语义标注,适用于室内导航、机器人路径规划和环境理解研究。ISU 数据集强调了室内场景的复杂性和多样性。
7、7-Scenes:
7-Scenes 是一个小型但高质量的室内场景数据集,由德国弗劳恩霍夫研究所提供。它包含了7个不同的室内环境,如厨房、卧室等。每个场景都有详细的点云数据和语义标注,适用于室内场景理解的初步研究。7-Scenes 数据集虽然规模较小,但提供了高质量的标注,有助于验证新算法的有效性。

需要注意的是许多大型数据集已经开源,下载时需通过邮箱发送邮件获取数据集下载链接,使用数据集时要考虑数据集的特点,例如室内场景,标注数据,数据类别以及使用的场景。只有对数据集有充分的理解,实验才能更好地进行,获得的实验结论才更具有说服力。


二、大规模点云数据时常用的深度学习模型和算法

1、PointNet:
PointNet 是一个直接在原始点云数据上操作的网络,它通过一个固定大小的输入(例如,一个点的集合)来学习全局特征表示。PointNet 及其变体(PointNet++)能够处理不规则的点云数据,并且不需要任何预处理步骤。
2、PointCNN:
ointCNN 是基于 PointNet 的扩展,它引入了卷积操作,允许模型捕捉局部特征。PointCNN 使用X-Transform 来学习点之间的局部特征,并通过图卷积网络(GCN)来处理点云
3、PointNet++:
PointNet++ 是 PointNet 的增强版本,它通过分层采样和区域提议网络(Region Proposal Network, RPN)来捕捉点云的层次结构。这种方法有助于提高对复杂场景的理解。
4、DGCNN (Dynamic Graph CNN):
DGCNN 是一种图卷积网络,它通过动态地构建图来处理点云数据。DGCNN 能够自适应地学习点之间的连接,从而更好地捕捉局部结构。
5、PointSIFT:
PointSIFT 是一种基于 SIFT(尺度不变特征变换)的点云特征描述符。它通过在点云上应用 SIFT 算法来提取局部特征,这些特征对于点云的匹配和识别非常有用。
6、PointGNN (Point Graph Neural Network):
PointGNN 是一种图神经网络,它利用图结构来表示点云,并使用图卷积来学习点之间的复杂关系。PointGNN 能够处理大规模点云数据,并且可以扩展到其他类型的图数据。
7、KPConv (Kernel Point Convolutions):
KPConv 是一种灵活的卷积操作,它允许在点云上进行可变形的卷积。这种方法可以适应点云的不规则性和密度变化,提高了模型的鲁棒性。
8、PointASNL (Pointwise Attention-based Semantic Labeling):
PointASNL 是一种基于注意力机制的点云语义分割方法。它通过学习点之间的注意力权重来强化重要特征,从而提高分割的准确性。
9、RandLA-Net:
andLA-Net 是一种专为大规模点云设计的网络,它通过随机采样和局部特征聚合来提高处理效率。RandLA-Net 在保持高效率的同时,还能实现较好的分割性能。

在使用时也要考虑到各种模型和算法的优势,比如,对于实时应用,可能需要选择计算效率高的模型;而对于需要高精度的任务,则可能需要选择能够捕捉更多细节的模型。
此处只做一个简单汇总,如果需要详细了解各个数据集,算法模型的使用情况,可以在论文中进行学习,常用的论文网址 https://cs.paperswithcode.com/


学习时间:

2024年2月6日——2024年2月21日


学习总结:

下一步工作就是选取和自己实验相关的主要数据集进行详细理解,以及上面提到的大规模点云数据集常用的算法模型运用。挑选几篇具有代表性的实验和论文结构进行分析,包括在各种数据集上的操作,以及如何对比实验,与基准进行参照对比,得出结论。


  • 8
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值