我的示例代码的dataloader中打包传入的是一个target字典,里面包括boxes和label,如果你们传入的是boxes和label,直接修改参数就行了,然后因为我传入的image和target都是经过torch的转换,数据格式是tensor,所以有一些转换格式的代码,然后图片shape是(c,h,w),随机概率设的是0.3,都按需要修改就行。
随机缩放
class randomScale(object):
def __call__(self,image,target):
#固定住高度,以0.8-1.2伸缩宽度,做图像形变
if random.random() < 0.3:
image = np.array(image)
image = np.transpose(image, (1, 2, 0))
boxes = target["boxes"]
scale = random.uniform(0.8,1.2)
height,width,c = image.shape
image = cv2.resize(image,(int(width*scale),height))
scale_tensor = torch.FloatTensor([[scale,1,scale,1]]).expand_as(boxes)
boxes = boxes * scale_tensor
image = np.transpose(image, (2, 0, 1))
image = torch.from_numpy(image)
target["boxes"] = boxes
return image,target
随机模糊
class randomBlur(object):
def __call__(self, image, target):
if random.random() < 0.3:
image = np.array(image)
image = np.transpose(image, (1, 2, 0))
image = cv2.blur(image, (5, 5))
image = np.transpose(image, (2, 0, 1))
image = torch.from_numpy(image)
return image, target
随机擦除(遮挡)
可以增加鲁棒性,提供两个经典算法,cutout和randomerase
class Cutout(object):
"""Randomly mask out one or more patches from an image.
Args:
n_holes (int): Number of patches to cut out of each image.
length (int): The length (in pixels) of each square patch.
"""
def __init__(self, n_holes=6, length=50):
self.n_holes = n_holes
self.length = length
def __call__(self, image, target):
"""
Args:
img (Tensor): Tensor image of size (C, H, W).
Returns:
Tensor: Image with n_holes of dimension length x length cut out of it.
"""
if random.random() < 0.3:
img = image
h = img.shape[1]
w = img.shape[2]
mask = np.ones((h, w), np.float32)
for n in range(self.n_holes):
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img = img * mask
image = img
return image, target
class RandomErasing(object):
'''
Class that performs Random Erasing in Random Erasing Data Augmentation by Zhong et al.
-------------------------------------------------------------------------------------
probability: The probability that the operation will be performed.
sl: min erasing area
sh: max erasing area
r1: min aspect ratio
mean: erasing value
-------------------------------------------------------------------------------------
'''
def __init__(self, sl=0.01, sh=0.25, r1=0.3, mean=