1 安装Anaconda
1.1 下载安装包
下载链接:repo.anaconda.com
点击View All Installers。
下载适合自己的版本,由于我电脑上安装了Python 3.9,因此使用的是:Anaconda3-2021.11-Windows-x86_64.exe
1.2 安装Anaconda
前面全部默认,安装路径选择一个较大的磁盘。
不要点击上方的复选框。点击Install。
1.3 新建Pytorch的运行环境
这个运行环境类似于虚拟机或者Docker。
安装完成后,点击开始,点击最新添加的Anaconda Prompt。
可以看到有(base),就说明运行正常。
新建Pytorch的环境,输入:
conda create -n pytorch python=3.9
(base) C:\Users\win10>conda create -n pytorch python=3.9
Collecting package metadata (current_repodata.json): done
Solving environment: done
==> WARNING: A newer version of conda exists. <==
current version: 4.10.3
latest version: 23.5.0
Please update conda by running
$ conda update -n base -c defaults conda
## Package Plan ##
environment location: G:\Anaconda3\envs\pytorch
added / updated specs:
- python=3.9
The following packages will be downloaded:
package | build
---------------------------|-----------------
ca-certificates-2023.05.30 | haa95532_0 120 KB
openssl-3.0.9 | h2bbff1b_0 7.4 MB
pip-23.1.2 | py39haa95532_0 2.8 MB
python-3.9.16 | h1aa4202_3 19.5 MB
setuptools-67.8.0 | py39haa95532_0 1.0 MB
sqlite-3.41.2 | h2bbff1b_0 894 KB
tzdata-2023c | h04d1e81_0 116 KB
wheel-0.38.4 | py39haa95532_0 83 KB
------------------------------------------------------------
Total: 31.9 MB
The following NEW packages will be INSTALLED:
ca-certificates pkgs/main/win-64::ca-certificates-2023.05.30-haa95532_0
openssl pkgs/main/win-64::openssl-3.0.9-h2bbff1b_0
pip pkgs/main/win-64::pip-23.1.2-py39haa95532_0
python pkgs/main/win-64::python-3.9.16-h1aa4202_3
setuptools pkgs/main/win-64::setuptools-67.8.0-py39haa95532_0
sqlite pkgs/main/win-64::sqlite-3.41.2-h2bbff1b_0
tzdata pkgs/main/noarch::tzdata-2023c-h04d1e81_0
vc pkgs/main/win-64::vc-14.2-h21ff451_1
vs2015_runtime pkgs/main/win-64::vs2015_runtime-14.27.29016-h5e58377_2
wheel pkgs/main/win-64::wheel-0.38.4-py39haa95532_0
Proceed ([y]/n)?
输入y。
Downloading and Extracting Packages
pip-23.1.2 | 2.8 MB | ############################################################################ | 100%
ca-certificates-2023 | 120 KB | ############################################################################ | 100%
setuptools-67.8.0 | 1.0 MB | ############################################################################ | 100%
sqlite-3.41.2 | 894 KB | ############################################################################ | 100%
python-3.9.16 | 19.5 MB | ############################################################################ | 100%
tzdata-2023c | 116 KB | ############################################################################ | 100%
openssl-3.0.9 | 7.4 MB | ############################################################################ | 100%
wheel-0.38.4 | 83 KB | ############################################################################ | 100%
Preparing transaction: done
Verifying transaction: done
Executing transaction: done
#
# To activate this environment, use
#
# $ conda activate pytorch
#
# To deactivate an active environment, use
#
# $ conda deactivate
(base) C:\Users\win10>
输入:conda activate pytorch
,激活pytorch环境。
(base) C:\Users\win10>conda activate pytorch
(pytorch) C:\Users\win10>
输入:pip list
,查看该环境下的python包。
(pytorch) C:\Users\win10>pip list
Package Version
---------- -------
pip 23.1.2
setuptools 67.8.0
wheel 0.38.4
(pytorch) C:\Users\win10>
由于环境下不包含pytorch,因此需要下载安装pytorch。
2 pytorch安装
下载链接:https://pytorch.org/
如果你电脑有英伟达10系以上的显卡,基本上都支持CUDA,如果只有因特尔的集显或者AMD的显卡,则Compute Platform选择CPU(后面的cuda测试也无法通过)。
复制命令:conda install pytorch torchvision torchaudio pytorch-cuda=11.7 -c pytorch -c nvidia
,在Anaconda Prompt中的pytorch环境输入。输入y开始下载。
我需要下载的包有2.38 G,打开手机热点下载速度快一点,或者使用镜像源下载。
The following packages will be downloaded:
package | build
---------------------------|-----------------
certifi-2023.5.7 | py39haa95532_0 153 KB
cffi-1.15.1 | py39h2bbff1b_3 238 KB
cryptography-39.0.1 | py39h21b164f_2 1.0 MB
cuda-cccl-12.2.53 | 0 1.3 MB nvidia
cuda-cudart-11.7.99 | 0 1.4 MB nvidia
cuda-cudart-dev-11.7.99 | 0 711 KB nvidia
cuda-cupti-11.7.101 | 0 10.2 MB nvidia
cuda-libraries-11.7.1 | 0 1 KB nvidia
cuda-libraries-dev-11.7.1 | 0 1 KB nvidia
cuda-nvrtc-11.7.99 | 0 71.9 MB nvidia
cuda-nvrtc-dev-11.7.99 | 0 14.3 MB nvidia
cuda-nvtx-11.7.91 | 0 43 KB nvidia
cuda-runtime-11.7.1 | 0 1 KB nvidia
filelock-3.9.0 | py39haa95532_0 19 KB
freetype-2.12.1 | ha860e81_0 490 KB
giflib-5.2.1 | h8cc25b3_3 88 KB
idna-3.4 | py39haa95532_0 93 KB
intel-openmp-2023.1.0 | h59b6b97_46319 2.7 MB
jinja2-3.1.2 | py39haa95532_0 211 KB
jpeg-9e | h2bbff1b_1 320 KB
libcublas-11.10.3.66 | 0 24 KB nvidia
libcublas-dev-11.10.3.66 | 0 282.4 MB nvidia
libcufft-10.7.2.124 | 0 6 KB nvidia
libcufft-dev-10.7.2.124 | 0 250.1 MB nvidia
libcurand-10.3.3.53 | 0 3 KB nvidia
libcurand-dev-10.3.3.53 | 0 50.0 MB nvidia
libcusolver-11.4.0.1 | 0 29 KB nvidia
libcusolver-dev-11.4.0.1 | 0 76.5 MB nvidia
libcusparse-11.7.4.91 | 0 13 KB nvidia
libcusparse-dev-11.7.4.91 | 0 149.6 MB nvidia
libdeflate-1.17 | h2bbff1b_0 151 KB
libnpp-11.7.4.75 | 0 294 KB nvidia
libnpp-dev-11.7.4.75 | 0 125.6 MB nvidia
libnvjpeg-11.8.0.2 | 0 4 KB nvidia
libnvjpeg-dev-11.8.0.2 | 0 1.7 MB nvidia
libpng-1.6.39 | h8cc25b3_0 369 KB
libtiff-4.5.0 | h6c2663c_2 1.2 MB
libuv-1.44.2 | h2bbff1b_0 288 KB
libwebp-1.2.4 | hbc33d0d_1 73 KB
libwebp-base-1.2.4 | h2bbff1b_1 304 KB
lz4-c-1.9.4 | h2bbff1b_0 143 KB
markupsafe-2.1.1 | py39h2bbff1b_0 26 KB
mkl-2023.1.0 | h8bd8f75_46356 155.6 MB
mkl-service-2.4.0 | py39h2bbff1b_1 45 KB
mkl_fft-1.3.6 | py39hf11a4ad_1 160 KB
mkl_random-1.2.2 | py39hf11a4ad_1 219 KB
networkx-2.8.4 | py39haa95532_1 2.6 MB
numpy-1.25.0 | py39h055cbcc_0 13 KB
numpy-base-1.25.0 | py39h65a83cf_0 6.2 MB
pillow-9.4.0 | py39hd77b12b_0 1000 KB
pycparser-2.21 | pyhd3eb1b0_0 94 KB
pyopenssl-23.0.0 | py39haa95532_0 97 KB
pytorch-2.0.1 |py3.9_cuda11.7_cudnn8_0 1.17 GB pytorch
pytorch-cuda-11.7 | h16d0643_5 4 KB pytorch
pytorch-mutex-1.0 | cuda 3 KB pytorch
requests-2.29.0 | py39haa95532_0 97 KB
sympy-1.11.1 | py39haa95532_0 11.7 MB
tbb-2021.8.0 | h59b6b97_0 149 KB
tk-8.6.12 | h2bbff1b_0 3.1 MB
torchaudio-2.0.2 | py39_cu117 5.7 MB pytorch
torchvision-0.15.2 | py39_cu117 7.7 MB pytorch
typing_extensions-4.6.3 | py39haa95532_0 55 KB
urllib3-1.26.16 | py39haa95532_0 201 KB
xz-5.4.2 | h8cc25b3_0 592 KB
zlib-1.2.13 | h8cc25b3_0 113 KB
zstd-1.5.5 | hd43e919_0 682 KB
------------------------------------------------------------
Total: 2.38 GB
安装完成后,需要输入:pip list
,查看环境内的包。
输入:python
,查看是否能正常使用。
输入:import torch
,查看是否能正常调用pytorch包。
输入:torch.cuda.is_available()
,如果返回True
,则表示能够正常使用cuda。
输入:exit()
,退出模式。
(pytorch) C:\Users\win10>pip list
Package Version
------------------ --------
brotlipy 0.7.0
certifi 2023.5.7
cffi 1.15.1
charset-normalizer 2.0.4
cryptography 39.0.1
filelock 3.9.0
idna 3.4
Jinja2 3.1.2
MarkupSafe 2.1.1
mkl-fft 1.3.6
mkl-random 1.2.2
mkl-service 2.4.0
mpmath 1.2.1
networkx 2.8.4
numpy 1.25.0
Pillow 9.4.0
pip 23.1.2
pycparser 2.21
pyOpenSSL 23.0.0
PySocks 1.7.1
requests 2.29.0
setuptools 67.8.0
sympy 1.11.1
torch 2.0.1
torchaudio 2.0.2
torchvision 0.15.2
typing_extensions 4.6.3
urllib3 1.26.16
wheel 0.38.4
win-inet-pton 1.1.0
(pytorch) C:\Users\win10>python
Python 3.9.16 (main, May 17 2023, 17:49:16) [MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
>>> exit()
(pytorch) C:\Users\win10>
3 Pycharm编辑器安装及测试
3.1 Pycharm安装及初步配置
略
3.2 Pycharm新建工程
点击File-Create Project。
新建位置,选择解释器(interpreter)。
选择Conda环境,找到pytorch中的python解释器。
点击OK,Create。
3.3 测试环境
点击Python Console,输入:import torch
、torch.cuda.is_available()
,如果返回正常,则说明已经正确导入环境。
输入:
a = 1
b = 1
c = range(1,5)
d = list(c)
可以看到右侧的变量。
4 Jupyter编辑器安装
如果前面安装了anaconda,jupyter已经自动安装了。
4.1 pytorch环境下安装Jupyter
但是jupyter安装在了base环境下,pytorch环境下没有jupyter,因此需要重新再pytorch环境下安装。下载过程建议使用手机流量(也很慢呢)。
在Conda Prompt中输入:
conda activate pytorch
conda install nb_conda_kernels
然后输入y。
安装信息如下:
\ DEBUG menuinst_win32:__init__(201): Menu: name: 'Anaconda${PY_VER} ${PLATFORM}', prefix: 'G:\Anaconda3\envs\pytorch', env_name: 'pytorch', mode: 'user', used_mode: 'user', root_prefix: 'G:\Anaconda3'
DEBUG menuinst_win32:create(328): Shortcut cmd is G:\Anaconda3\python.exe, args are ['G:\\Anaconda3\\cwp.py', 'G:\\Anaconda3\\envs\\pytorch', 'G:\\Anaconda3\\envs\\pytorch\\python.exe', 'G:\\Anaconda3\\envs\\pytorch\\Scripts\\jupyter-notebook-script.py', '"%USERPROFILE%/"']
done
(pytorch) C:\Users\win10>
4.2 打开jupyter
Conda Prompt尝试打开jupyter,输入:jupyter notebook
。
我虽然会报错,但是还是能打开的。
新建笔记,使用conda的pytorch环境。
输入后点击运行。
参考链接:
https://www.bilibili.com/video/BV1hE411t7RN