

上下文建模或多层次特征融合方法已被证明是提高语义分割性能的有效方法。然而,它们没有专门处理像素上下文失配和空间特征失配问题,且高计算复杂度阻碍了它们在实时场景中的广泛应用。本文提出一种轻量级的上下文和空间特征校准网络(CSFCN),通过基于池化和基于采样的注意力机制来解决上述问题。CSFCN包含两个核心模块:上下文特征校准(Context Feature Calibration, CFC)模块和空间特征校准(Spatial Feature Calibration, SFC)模块。CFC采用级联金字塔池化模块高效捕获嵌套上下文,然后根据像素-上下文相似度为每个像素聚合私有上下文,实现上下文特征校准。SFC沿着通道维度将特征分割为多组子特征,并通过可学习采样将子特征传播到其中,以实现空间特征校准。在Cityscapes和CamVid数据集上的广泛实验表明,该方法在速度和精度之间实现了最先进的权衡。
本文介绍了一种名为CSFCN的轻量级网络,通过上下文特征校准和空间特征校准模块有效处理像素上下文失配和空间特征失配,实现在保持高速度的同时提升语义分割精度,已在Cityscapes和CamVid数据集上取得先进性能。
1372

被折叠的 条评论
为什么被折叠?



