即插即用的下采样模块HWD,:一种简单有效的语义分割下采样模块

看主页置顶,或者[水论文]即插即用的下采样模块,HWD,该模块可以很容易地集成到cnn中,以增强语义分割模型的性能_哔哩哔哩_bilibili

摘要:

下采样操作,如最大池化或跨步卷积,在卷积神经网络(cnn)中被广泛使用,以聚合局部特征,扩大感受野,并最小化计算开销。然而,对于语义分割任务,局部邻域的特征池化可能会导致重要空间信息的丢失,而这有利于像素级预测。为解决这个问题,本文提出一种简单而有效的池化操作,称为Haar小波下采样(HWD)模块。该模块可以很容易地集成到cnn中,以增强语义分割模型的性能。HWD的核心思想是利用Haar小波变换在尽可能多地保留特征图信息的同时降低特征图的空间分辨率。此外,为了研究HWD的好处,提出了一种新的度量,称为特征熵指数(FEI),它衡量在cnn中降采样后的信息不确定性程度。具体来说,FEI可以用来表明下采样方法在语义分割中保持必要信息的能力。综合实验表明,所提出的HWD模块可以(1)有效地提高跨不同模态图像数据集的分割性能,以及(2)与传统的下采样方法相比,有效地降低信息不确定性。

<think>好的,我现在需要回答用户关于Haar小波下采样的公式的问题。首先,用户可能已经了解了小波变换的基本概念,特别是Haar小波,但需要具体的下采样公式。我要确保回答准确且易于理解。 首先,我应该回顾Haar小波的基础知识。Haar小波是最简单的小波,用于信号分解和重构。下采样通常与多分辨率分析相关,涉及将信号分解为低频和高频成分,然后进行降采样。 接下来,用户可能想知道具体的数学公式,包括分解步骤中的近似(低频)和细节(高频)系数的计算。需要分步骤解释,确保公式正确,并符合LaTeX格式要求,如用户之前提到的使用$...$和$$...$$。 然后,我应该考虑下采样的过程。在Haar小波分解后,通常会对近似和细节系数进行下采样,即保留偶数索引的样本,舍弃奇数索引的样本,或者相反。需要明确下采样的具体操作,例如取平均值和差值后的下采样步骤。 另外,可能需要区分一维和二维情况。用户可能关心的是图像处理中的二维下采样,但Haar小波的一维分解是基础。需要先解释一维情况,再扩展到二维,如二维图像的行和列处理。 还要注意公式的正确性。例如,一维情况下,近似系数是相邻像素的平均,细节系数是差值,然后下采样通常是取每个计算后的结果的每隔一个样本。对于二维情况,分解为LL、LH、HL、HH四个子带,每个子带都要下采样。 需要检查是否遗漏了任何步骤,比如分解后的下采样是否涉及步长调整或子采样方法。确保公式中的符号一致,比如使用x[n]表示原始信号,a[k]和d[k]表示近似和细节系数,使用正确的索引范围。 同时,用户可能希望了解实际应用中的例子,比如图像压缩中的Haar小波变换,下采样后的结果如何。可能需要用简单的例子来说明,比如一个8x8的图像如何分解为四个4x4的子带,并进一步下采样。 最后,确保回答结构清晰,分步骤说明,使用正确的数学公式,并且符合用户之前提供的格式要求。可能需要使用列表或分点来组织内容,帮助用户逐步理解Haar小波下采样的过程。</think>以下是Haar小波下采样的核心公式和步骤说明: --- ### **Haar小波下采样原理** Haar小波下采样通过**平均**和**差分**操作将信号分解为低频(近似)和高频(细节)成分,并对结果进行**降采样(1/2长度)**。 --- ### **一维Haar小波下采样公式** 设原始信号为$x[n]$, $n=0,1,...,N-1$($N$为偶数): #### **1. 分解步骤** - **近似系数(低频)**:相邻两点的平均值 $$ a[k] = \frac{x[2k] + x[2k+1]}{\sqrt{2}}, \quad k=0,1,...,\frac{N}{2}-1 $$ - **细节系数(高频)**:相邻两点的差值 $$ d[k] = \frac{x[2k] - x[2k+1]}{\sqrt{2}}, \quad k=0,1,...,\frac{N}{2}-1 $$ #### **2. 下采样实现** 直接保留近似系数$a[k]$和细节系数$d[k]$(长度均降为原信号的1/2) **输出结构**:$[a[0],a[1],...,a_{\frac{N}{2}-1} | d[0],d[1],...,d_{\frac{N}{2}-1}]$ > **注**:$\sqrt{2}$用于保持能量守恒(正交归一化),若忽略则为非正交版本。 --- ### **二维扩展(图像处理)** 对图像分别按行、列进行一维分解,得到4个子带: ```math \begin{cases} LL = \text{行低频} \rightarrow \text{列低频} & (\text{近似子带}) \\ LH = \text{行低频} \rightarrow \text{列高频} & (\text{垂直细节}) \\ HL = \text{行高频} \rightarrow \text{列低频} & (\text{水平细节}) \\ HH = \text{行高频} \rightarrow \text{列高频} & (\text{对角线细节}) \end{cases} ``` 每个子带尺寸降为原图的1/2×1/2。 --- ### **示例:8×8图像的下采样过程** 1. **行分解**:每行生成4个近似系数和4个细节系数 2. **列分解**:对行分解结果按列再分解 3. **输出结构**: $$ \begin{bmatrix} LL_{4\times4} & LH_{4\times4} \\ HL_{4\times4} & HH_{4\times4} \end{bmatrix} $$ --- ### **数学形式化表达** 设二维信号$X \in \mathbb{R}^{M\times N}$,下采样后: ```math LL[m,n] = \frac{ X[2m,2n] + X[2m,2n+1] + X[2m+1,2n] + X[2m+1,2n+1] }{2} ``` 其他子带通过类似差分计算得到(需包含方向性符号)。 --- ### **关键特点** 1. **计算高效**:仅需加减法和移位操作 2. **临界采样**:输出总数据量=输入数据量 3. **多级分解**:可对LL子带递归分解(如JP2000标准中的5级分解) 如果需要具体代码实现或更深入的数学推导,可以进一步说明!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV缝合怪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值