拉氏变换:
laplace(f(t))
>> syms s t;
>> syms a
>> laplace(a)
ans =
1/s^2
>> laplace(t^2)
ans =
2/s^3
ilaplace(F(s)):反拉氏变换
>> ilaplace(1/s^3)
ans =
t^2/2
不能用拉氏变换直接求解导数,需要先转换
fourier(f(t)):傅里叶变换
>> fourier(sin(t))
ans =
-pi*(dirac(w - 1) - dirac(w + 1))*1i
ifourier(f(t)):反傅里叶变换
fft:快速傅里叶变换
randn:产生随机数
>> t=0:0.01:10;
>> x=3*cos(pi*t)+2*cos(3*pi*t)+cos(6*pi*t);
>> x_noisy=x+randn(size(t));
>> plot(1000*t(1:100),x(1:100))加了噪声之后的:
>> plot(1000*t(1:100),x_noisy(1:100))