小罗碎碎念
本期推文主题
这一期推文是关于人工智能在肿瘤预后预测领域的最新研究进展,影像组学、病理组学以及基因组学的内容均有涉及。
偏临床方向的,可以重点关注第一、五、六篇文献。第一篇文献研究的东西,我第一次接触,又又又扩大自己的知识面了;第五篇和第六篇都是用机器学习研究与剂量相关的内容,并且是R语言写的代码,对于临床的比较友好。
第二篇文献是一篇综述,一周前才发表,系统的介绍了AI在免疫肿瘤学中的应用;第三篇是直接与病理相关的,我们系统的看完今天的推文就会发现,病理组学和影像组学的应用场景有明显的区别。如何把二者结合起来,真的是一个值得持续探索的方向,至于基因组学和蛋白组学更多的是后期的一个辅助作用——进一步提升模型的准确度。
我是罗小罗同学,下期推文见!!
一、人类造血祖细胞的免疫表型与转录组全景图谱
一作&通讯
角色 | 姓名 | 单位名称(中文) |
---|---|---|
第一作者 | Xuan Zhang | / |
第一作者(共同) | Baobao Song | / |
通讯作者 | Nathan Salomonis | 辛辛那提儿童医院医疗中心生物医学信息学部,辛辛那提,俄亥俄州,美国 |
通讯作者(共同) | H. Leighton Grimes | 同上,以及实验血液学和癌症生物学部 |
文献概述
这篇文章是发表在《自然免疫学》2024年4月的一篇研究,题为"An immunophenotype-coupled transcriptomic atlas of human hematopoietic progenitors"。
该研究通过单细胞多模态方法,特别是细胞索引转录组和表位测序(CITE-seq)技术,对人类造血祖细胞进行了深入分析。CITE-seq技术允许同时对细胞表面的蛋白质和转录组进行分析,揭示了控制祖细胞状态的基因组程序。
研究团队使用CITE-seq系统地分析了来自健康成年人骨髓的细胞,通过266种CITE-seq抗体(由抗体衍生的标签,ADTs)的滴定和机器学习优化了一组132种抗体的面板。这种多模态分析能够解析超过80种不同的干细胞、祖细胞、免疫细胞、基质细胞和过渡性细胞,这些细胞通过其独特的表面标记和转录组来定义。研究创建的数据集支持了流式细胞术解决方案,用于预测细胞状态,并在跨越种族和性别的多个供体中一致检测到数十种细胞表面标记。
此外,研究还通过对健康供体的细胞进行注释,提名了急性髓系白血病干细胞群体的正常骨髓等效物,这些群体在临床反应上存在差异。这项研究提供的图谱作为人类健康和疾病中造血祖细胞分析的高级数字资源。
研究还讨论了如何通过CITE-seq技术优化抗体鸡尾酒,以改善对骨髓祖细胞的分析。通过这种技术,研究人员能够识别和验证新的表面抗原组合,用于定义髓系细胞谱系的承诺,以及独特的红细胞成熟阶段,并且改进了使用不同CD133水平富集巨核细胞-红细胞祖细胞(MEPs)的方法。
最后,研究还探讨了如何将这些数据与现有的健康供体细胞图谱进行比较,以及如何利用这些信息来理解白血病干细胞(LSCs)的起源和它们可能的隔离策略。通过这种方式,研究人员能够为白血病治疗反应的异质性提供新的见解,并可能为开发新的治疗策略提供信息。
知识点补充:抗体鸡尾酒
抗体鸡尾酒是一种包含多种抗体的混合溶液,每种抗体都能特异性地识别并结合到不同的细胞表面抗原或蛋白质。这种混合使用的方法在生物学和医学研究中非常重要,尤其是在免疫学、细胞生物学和血液学等领域。
抗体鸡尾酒的特点和应用:
-
多样性:鸡尾酒中包含的抗体种类多样,可以针对不同的细胞表面标记进行特异性识别。
-
并行检测:通过一次实验可以同时检测多种细胞表面标记,提高了实验效率和信息获取的丰富性。
-
优化浓度:每种抗体在鸡尾酒中的比例和浓度都需要经过精确的优化,以确保最佳的标记效果和最小的非特异性结合。
-
多色流式细胞术:抗体鸡尾酒常用于多色流式细胞术,允许研究者通过不同的荧光标记同时分析多个细胞参数。
-
细胞分型:在细胞分型研究中,抗体鸡尾酒可以帮助区分不同的细胞亚群,如干细胞、祖细胞、免疫细胞等。
-
疾病研究:在疾病研究中,抗体鸡尾酒可以揭示病理状态下细胞表面标记的变化,有助于理解疾病机制和发现生物标志物。
-
治疗监测:在临床治疗中,抗体鸡尾酒可以用于监测治疗效果,通过分析细胞表面标记的变化来评估治疗反应。
-
细胞排序:在细胞排序实验中,抗体鸡尾酒用于富集特定细胞群体,为下游的分子分析或其他实验提供纯化的细胞样本。
优化抗体鸡尾酒的重要性:
- 特异性:确保抗体与目标抗原的结合具有高度特异性,减少交叉反应。
- 灵敏度:优化的抗体浓度可以提高检测的灵敏度,即使是低丰度的抗原也能被有效检测。
- 动态范围:合理的抗体浓度分布可以扩大检测的动态范围,捕捉从低到高表达水平的抗原。
- 多重标记:在有限的样本量中实现多重标记,最大化信息获取。
在CITE-seq技术中,抗体鸡尾酒的优化对于实现高通量、高精度的细胞表面蛋白和转录组联合分析至关重要。通过这种方法,研究人员能够更全面地理解细胞的免疫表型和功能状态。
重点关注
图1展示了一个综合的人类骨髓细胞状态转录组图谱。
a. 骨髓抽提细胞分离和滴定实验流程:这部分描述了从骨髓中提取细胞并进行实验的步骤,包括细胞的分离、滴定以及用于后续分析的准备工作。
b. 先前参考细胞注释标签的整合方案:这里提到了使用cellHarmony和Azimuth这两种方法,将先前的参考细胞注释标签与基于RNA的315,792个骨髓细胞的无监督聚类(scTriangulate)相结合。这意味着研究者利用现有的细胞标签信息,通过无监督学习方法来识别和分类骨髓中的不同细胞群体。
c. UMAP(均匀流形近似和投影):展示了来自四位健康捐献者的细胞源分离富集方法的UMAP图。UMAP是一种用于数据可视化的降维技术,可以帮助研究者识别数据中的结构模式。
d. scTriangulate聚类注释:最终通过scTriangulate算法确定的细胞聚类被参考研究的注释源所标注。这表示每个聚类群体都被赋予了特定的细胞类型标签,以便于识别和理解。
e. scTriangulate稳定性置信度得分:从整合得到的(Shapley置信度得分),这是一种评估聚类稳定性的度量,得分越高表示聚类结果越稳定可靠。
f. 基于转录组的聚类注释:基于源聚类和标记基因的转录组定义聚类注释。这表示聚类不仅基于表面标记,还考虑了细胞的基因表达模式。
g-i. HSPCs、多系祖细胞和基质细胞中的顶级RNA定义的标记基因:这些小节分别展示了在造血干细胞(HSPCs)、假定的多系祖细胞和基质细胞中表达量最高的RNA标记基因。这些标记基因对于识别和区分不同的细胞类型至关重要。
缩写解释:
- BMCP:嗜碱细胞/肥大细胞祖细胞
- Mk:巨核细胞
- Er:红细胞系
- Myel:髓系
- MultiLin:多系祖细胞
- TEM:效应记忆T细胞
- TCM:中心记忆T细胞
- MAIT:粘膜相关恒定T细胞
- MPP:多能祖细胞
- Eos:嗜酸性粒细胞
- MKP:巨核细胞祖细胞
- ASDC:AXL+SIGLEC6+ 树突细胞
- Mono:单核细胞
- cMOP:共同单核细胞祖细胞
- Mac:巨噬细胞
- MSC:间充质干细胞
- Neu:中性粒细胞
- PC:浆细胞
- int:中间状态
整体来看,图1提供了一个从实验设计到数据分析的全面视图,展示了如何通过整合多种数据和分析方法来构建一个详细的人类骨髓细胞图谱。这对于理解血液形成、疾病机制以及开发新的治疗策略具有重要意义。
二、人工智能在免疫肿瘤学中的生物标志物预测:系统综述
一作&通讯
角色 | 姓名 | 单位名称(中文) |
---|---|---|
第一作者 | A. Prelaj | 米兰国家肿瘤研究所医学肿瘤科,意大利 |
通讯作者1 | Dr Arsela Prelaj | 米兰国家肿瘤研究所医学肿瘤科,意大利 |
通讯作者2 | Dr Charlotte Spencer | 弗朗西斯·克里克研究所癌症动力学实验室,英国伦敦 |
文献概述
这篇文章是一篇系统综述,标题为《Artificial intelligence for predictive biomarker discovery in immuno-oncology: a systematic review》,作者A. Prelaj等人,发表在《Annals of Oncology》。
这篇文章系统回顾了人工智能在免疫肿瘤学领域预测生物标志物发现中的应用,并探讨了其在多种癌症类型中的潜力和挑战。
背景:
免疫检查点抑制剂(ICIs)的广泛使用已经彻底改变了多种癌症的治疗方式。然而,选择可能从ICI中受益的患者仍然是一个挑战。
AI方法允许在研究和精准免疫肿瘤学的发展中利用高维度的肿瘤学数据。
材料与方法:
作者进行了一项系统性文献回顾,涵盖了研究ICI在癌症患者中的疗效预测的同行评审原创文章,这些研究涵盖了五种数据模式:
- 基因组学(包括基因组学、转录组学、表观基因组学)
- 放射组学
- 数字病理学(病理组学)
- 真实世界数据
- 多模态数据
结果:
综述包括了90项研究,其中80%发表于2021-2022年。这些研究中,37项使用了基因组数据,20项使用了放射组数据,8项使用了病理组数据,20项使用了真实世界数据,5项使用了多模态数据。
72%的研究使用了标准机器学习方法,22%使用了深度学习方法,6%同时使用了两者。
非小细胞肺癌(NSCLC)是最常研究的癌症类型,占比36%,其次是黑色素瘤(16%),25%的研究包括了泛癌研究。没有前瞻性研究设计从一开始就纳入基于AI的方法;所有研究都是在事后分析中实施AI。
通过AI方法在放射组学和病理组学中识别了ICI的新生物标志物,并且分子生物标志物已经从基因组学扩展到转录组学和表观基因组学。最后,通过整合多模态/多组学数据,出现了复杂的算法和新型的基于AI的标记物,如元生物标志物。
结论:
基于AI的方法已经扩大了生物标志物发现的视野,展示了整合现有数据集中的多模态数据以发现新的元生物标志物的能力。
尽管包括的研究大多数显示了基于AI的免疫治疗益处预测的前景,但尚无提供立即实践改变的高级别证据。需要事先计划的前瞻性试验设计来覆盖这些软件生物标志物的所有生命周期步骤,从开发和验证到整合到临床实践中。
文章强调了AI在生物标志物发现中的潜力,尤其是在整合多模态数据方面的能力,并指出了将AI方法转化为临床实践前需要克服的挑战。
重点关注
图1展示了开发用于预测免疫治疗(IO)疗效的模型的一般步骤,并显示了针对不同数据类型常用的方法论。
整个工作流程包括三个主要步骤:
-
数据加工和整合:适当地收集和存储组学数据、临床数据或图像数据,必要时进行整合,并进行预处理。处理后的数据被划分为训练数据集和测试数据集。
-
模型学习:可以应用不同的技术让模型从训练数据集中学习。如果数据类型是结构化的(例如,真实世界数据和基因组数据),标准机器学习(ML)是合适的选择;而深度学习(DL)主要用于图像(数字病理学和放射组学)。学习方法(监督学习、半监督学习和无监督学习)由最终目标和标记数据的可用性来指导。
-
内部和外部验证:在包含“真实情况”的测试数据集上评估训练模型的性能。同时,解释模型如何产生预测。模型的预测能力和可解释性在外部数据集上进行验证,以评估其在未见过的数据(例如,来自不同医疗中心的数据)上的稳健性和普适性。根据内部和外部评估的结果,可以制定新的假设,以改进数据收集并训练改进的模型。多模态数据整合可以在流程的不同阶段进行。
AI代表人工智能;AUC代表曲线下面积;ML代表机器学习;RWD代表真实世界数据。
这个流程强调了在开发预测模型时,从数据的收集和处理到模型的训练、验证和解释的重要性。同时,它也突出了多模态数据整合在提高模型预测性能和泛化能力中的作用。
三、人工智能助力快速识别乳腺癌和卵巢癌中的同源重组缺陷状态
一作&通讯
角色 | 姓名 | 单位(中文翻译) |
---|---|---|
第一作者 | Erik N. Bergstrom | 加州大学圣地亚哥分校摩尔斯癌症中心、加州大学圣地亚哥分校细胞与分子医学系、加州大学圣地亚哥分校生物工程系 |
通讯作者 | Ludmil B. Alexandrov | 加州大学圣地亚哥分校摩尔斯癌症中心、加州大学圣地亚哥分校细胞与分子医学系、加州大学圣地亚哥分校生物工程系、加州大学圣地亚哥分校Sanford干细胞研究所 |
文献概述
这篇文章讨论了一个名为DeepHRD的深度学习平台,它能够从常规的H&E染色组织切片中预测乳腺癌和卵巢癌中的同源重组缺陷(HRD)。研究由Erik N. Bergstrom, PhD等人完成,并在2024年7月31日发表在《临床肿瘤学杂志》上。
HRD的癌症可以从铂类药物和聚(ADP-核糖)聚合酶(PARP)抑制剂中受益,但标准的HRD检测需要分子分析,这并不普遍可用。
研究者使用癌症基因组图谱(The Cancer Genome Atlas, TCGA)中的数据,训练了DeepHRD,并将其与四种标准的HRD分子检测方法进行了比较。
DeepHRD在预测TCGA中的HRD方面表现出了很好的性能,其AUC(Area Under the Curve,曲线下面积)达到了0.81。此外,DeepHRD在两个独立的乳腺癌队列中也得到了验证,并在外部的铂处理转移性乳腺癌队列中显示出,被预测为HRD的样本有更高的完全缓解率和中位无进展生存期(PFS)。
DeepHRD还可以通过迁移学习应用于高级别浆液性卵巢癌,并预测了在一线和新辅助铂治疗后有更好的总生存期(OS)。研究表明,与传统的分子检测相比,DeepHRD能够将更多患者分类为HRD,这些患者在高级别浆液性卵巢癌中有更好的OS,以及在转移性乳腺癌中对铂类药物有特定的PFS。
文章的结论是,DeepHRD可以直接从常规的H&E染色玻片中预测HRD,并且可以广泛应用于不同的外部队列、切片扫描仪和组织固定变量。DeepHRD作为一个AI分类器,可以作为现有分子HRD检测的补充,为癌症治疗提供更快速、成本效益更高的选择。
重点关注
FIG 1展示了用于从组织切片中检测同源重组缺陷(HRD)的多分辨率卷积神经网络架构。
这个架构分为两个主要部分:训练DeepHRD模型和使用训练好的模型进行HRD预测。
训练DeepHRD模型(A部分):
- 预处理和质量控制:整个切片图像(WSI)首先经过组织分割、非聚焦组织过滤,并最终在5倍放大倍数下将包含组织的区域划分为小瓷砖(tiles)。
- 特征提取:所有瓷砖通过第一个多实例学习(MIL)ResNet18卷积神经网络,使用这25个最佳预测瓷砖分数的平均值作为WSI的预测得分。
- dropout正则化:在特征提取模块的全连接层中引入dropout技术,以减少训练过程中的过拟合;在推理过程中也使用dropout来模拟蒙特卡洛dropout,用于计算最终WSI预测的置信区间(CI)。
- 自动选择感兴趣区域(ROI):利用特征提取层的倒数第二层的特征向量,通过主成分分析降维,并使用定制的k-means聚类模块来确定每个样本的最佳聚类数量。然后选择聚类中具有最高预测概率的ROI瓷砖。
- 高分辨率重采样:所选瓷砖在20倍放大倍数下重新采样,用于训练第二个MIL-ResNet18模型。
- 预测集成:两个模型的预测结果被聚合,形成单个WSI的最终预测得分,并据此计算CI和置信度阈值。
使用训练好的DeepHRD模型进行HRD预测(B部分):
- DeepHRD为单个患者的活检提供最终预测得分,并据此进行计算诊断,以便后续的临床操作。
在这个过程中,CNN表示卷积神经网络,HRD表示同源重组缺陷,HRP表示同源重组正常,MIL表示多实例学习,PARPi表示聚(ADP-核糖)聚合酶抑制剂,ROI表示感兴趣区域,WSI表示全切片图像。
四、人工智能辅助的转录组特征标记在胰腺癌个性化辅助化疗中的应用
一作&通讯
角色 | 姓名 | 单位(中文翻译) |
---|---|---|
第一作者 | N. Fraunhoffer | 马赛癌症研究中心(Centre de Recherche en Cancérologie de Marseille, CRCM) |
通讯作者1 | N. Dusetti | 马赛癌症研究中心(Centre de Recherche en Cancérologie de Marseille, CRCM) |
通讯作者2 | J. Iovanna | 马赛癌症研究中心(Centre de Recherche en Cancérologie de Marseille, CRCM) |
文献概述
这篇文章标题为《Development and validation of AI-assisted transcriptomic signatures to personalize adjuvant chemotherapy in patients with pancreatic ductal adenocarcinoma》,由N. Fraunhoffer等人撰写,发表在《Annals of Oncology》。
这篇文章报道了一种基于人工智能的转录组特征标记的开发与验证,该标记能够个性化胰腺导管腺癌(PDAC)患者的辅助化疗方案,以提高疗效并减少毒性。
研究背景:
PDAC是一种高度侵袭性的癌症,手术治疗后常采用辅助化疗,主要是基于吉西他滨(GEM)的方案或改良的FOLFIRINOX(mFFX)方案。
尽管mFFX方案显示出比GEM方案更高的疗效,但它也与更高的毒性相关。目前的治疗决策主要基于患者的整体表现状态,而不是肿瘤的分子特征。
因此,本研究的目标是开发针对特定药物的转录组特征标记,以实现个性化的化疗治疗。
患者与方法:
研究使用了来自临床前模型的PDAC数据集,包含了mFFX方案成分的化疗反应特征。
通过独立成分分析和最小绝对收缩和选择算子-随机森林方法,研究者鉴定了与化疗反应相关的特定基因转录本,并获得了三种转录组AI特征标记。
这些标记与之前开发的GEM标记结合,形成了一个名为“Pancreas-View”的工具,并在PRODIGE-24/CCTG PA6试验的343名患者的队列中进行了临床验证。
研究结果:
研究结果显示,被预测对所使用药物敏感的患者(n=164;47.8%)比其他患者有更长的无病生存期(DFS)。
在mFFX敏感组接受mFFX治疗的患者的中位DFS为50.0个月,GEM敏感组接受GEM治疗的中位DFS为33.7个月。
相比之下,治疗预测不匹配的患者(n=86;25.1%)或对所有药物均耐药的患者(n=93;27.1%)的DFS更短,分别为10.6个月和10.8个月。
结论:
本研究介绍了一种基于转录组的工具,该工具使用临床前模型和机器学习开发,能准确预测对mFFX和GEM的敏感性。这项研究为PDAC患者的个性化辅助化疗提供了新的视角和方法。
重点关注
Figure 1展示了用于派生人工智能(AI)特征标记的工作流程图。
这个流程包括以下几个关键步骤:
-
独立成分分析(ICA):使用来自患者衍生的原代细胞培养(PDCs)和相应的患者衍生的异种移植瘤(PDXs)的数据,进行ICA以识别与化疗反应相关的基因成分。
-
派生队列的投影:将ICA得到的基础特征标记投影到对应的派生队列上,这涉及到将基因对转录组成分的贡献通过数学运算转换成得分。
-
敏感性分层:使用来自survminer R包的‘surv_cutpoint’函数,根据最低P值的最佳分离点将患者分层为对特定药物‘敏感’或‘耐药’。
-
特征选择和机器学习:利用最小绝对收缩和选择算子(LASSO)与随机森林(RF)结合的方法进行特征选择,并通过双重交叉验证来优化AI辅助预测器。LASSO用于降维和去除不适当或不相关的特性(基因),以减少噪声并增强模型的稳健性和可转移性。
-
交叉验证和模型优化:将派生队列分为70%的训练集和30%的验证集,并重复此过程100次,使用glmnet R包拟合带有LASSO惩罚的正则化逻辑回归,以及caret R包生成随机森林预测器。
-
Cox回归分析:对预测结果进行Cox单变量回归分析,然后使用Akaike信息准则(AIC)进行比较,选择表现最佳的预测器。
-
最终的AI特征标记:选择在训练集、验证集和整个派生队列中表现最佳的共同预测器,并将它们应用于PRODIGE-24/CCTG PA6队列。
-
临床验证:最后,将Pancreas-View工具在PRODIGE-24/CCTG PA6队列中进行临床验证,以测试其预测药物反应的性能。
整个流程利用了AI技术结合转录组数据,通过一系列的生物信息学分析和统计方法,开发出能够预测PDAC患者对特定化疗药物敏感性的AI特征标记。
五、基于患者特征的晚期卵巢癌剂量密集型化疗方案疗效评估
一作&通讯
角色 | 姓名 | 单位(中文) |
---|---|---|
第一作者 | Ayumi Taguchi | 东京都癌症和传染病中心,龟户医院,妇科,文京区,东京,日本 |
通讯作者 | Muneaki Shimada | 东北大学先进研究创新下一代医学中心,宫城县,仙台市,日本;东北大学医学研究生院妇产科,宫城县,仙台市,日本 |
文献概述
这篇文章是一项关于剂量密集型紫杉醇(dose-dense paclitaxel)联合卡铂(carboplatin)治疗晚期卵巢癌的异质性治疗效果研究。
研究使用了日本临床试验JGOG3016的数据,探索了不同子群体在接受剂量密集型紫杉醇治疗时的效果差异。
- 研究背景:尽管JGOG3016试验显示剂量密集型每周紫杉醇联合卡铂能显著延长晚期卵巢癌患者的总生存期(OS),但其他临床试验中并未发现其相较于三周一次的紫杉醇方案有优势。
- 研究目的:应用因果树分析,以数据驱动的方式探索不同子群体对剂量密集型紫杉醇的不同治疗效果。
- 研究方法:研究样本为JGOG3016试验中的587名II-IV期卵巢癌患者。主要终点是接受剂量密集型与常规紫杉醇治疗的患者3年OS的治疗效应。
- 研究结果:
- 年龄小于50岁的患者两组的3年OS相似。
- 年龄大于或等于50岁的患者中,剂量密集型组的3年OS更高。
- 在50岁以上、II/III期疾病、BMI小于23 kg/m²、非透明细胞/粘液性癌(non-CC/MC),以及残留肿瘤大于或等于1厘米的患者中,剂量密集型紫杉醇显示出强烈的正面治疗效果。
- 然而,在60岁以上、IV期癌症的患者中,尽管OS没有显著差异,但剂量密集型紫杉醇的3年OS率比常规紫杉醇低23%。
- 结论:因果树分析建议,具有1厘米以上残留肿瘤组织的预后不良组可能从剂量密集型紫杉醇中获益,而老年患者且具有晚期疾病和低性能状态的患者可能受到剂量密集型紫杉醇的负面影响。这些发现为未来的验证研究提供了感兴趣的子群体,基于临床特征的个性化治疗有望改善晚期卵巢癌的预后。
这篇文章提供了对晚期卵巢癌治疗方案个性化的见解,并强调了在不同患者群体中可能需要不同治疗策略的重要性。
重点关注
FIGURE 2 展示了通过因果树分析识别的不同患者亚群,以及这些亚群在接受剂量密集型紫杉醇-卡铂(dose-dense TC)和常规紫杉醇-卡铂(conventional TC)治疗之间3年总生存率的差异。
-
节点和分支点:图中的节点表示因果树分析中的分支点,这些点显示了协变量(如年龄、BMI、疾病阶段等)及其临界值。每个分支点代表一个特定的患者特征,根据这些特征,患者被分为不同的亚群。
-
亚群标识:从 [A] 到 [U] 的每个字母代表一个通过因果树分析识别出的不同亚群。
-
数据框内数值:数据框内顶部的数值表示两种治疗方案之间3年总生存率的差异百分比,公式为:(剂量密集型TC的3年生存率) - (常规TC的3年生存率)。如果这个数值是正数,表示剂量密集型TC的效果更好;如果是负数,则表示常规TC的效果更好。
-
数据框内底部数值:表示每个亚群中的患者数量。
-
具体例子:
- 在亚群 [K] 中,有127名年龄小于50岁的患者,常规TC的3年生存率比剂量密集型TC高出7.9%。
- 在亚群 [U] 中,有62名年龄在50岁以上、BMI在20-23 kg/m²之间、患有II或III期非透明细胞/粘液性癌(non-CC/MC),并且残留肿瘤至少1厘米的患者,剂量密集型TC的3年生存率比常规TC高出37%。
-
其他缩写说明:
- BMI:体重指数(Body Mass Index)
- CC:透明细胞癌(Clear Cell Carcinoma)
- MC:粘液性癌(Mucinous Carcinoma)
- Remain:残留肿瘤(Residual Tumor)
- TC:紫杉醇-卡铂(Paclitaxel-Carboplatin)
- y.o.:年龄(Years Old)
通过这种分析,研究者能够识别出对剂量密集型治疗方案反应特别好或不好的特定患者群体,从而为未来的个性化治疗提供了依据。
六、基于机器学习的个体化剂量测量对肝细胞癌SIRT治疗效果的预测研究
一作&通讯
作者角色 | 作者姓名 | 单位名称(中文) |
---|---|---|
第一作者 | Zahra Mansouri | 日内瓦大学医院核医学与分子影像科,瑞士 |
通讯作者 | Habib Zaidi | 日内瓦大学医院核医学与分子影像科,瑞士 格罗宁根大学核医学与分子影像系,荷兰 南丹麦大学核医学系,丹麦 奥布达大学大学研究与创新中心,匈牙利 |
文献概述
这篇文章通过机器学习分析生物标志物和剂量测量参数,初步研究了它们在预测接受90Y玻璃微球选择性内部放射治疗(SIRT)在肝细胞癌患者的整体存活(OS)和无进展存活(PFS)方面的作用。
研究包括了17名接受90Y SIRT治疗的肝细胞癌(HCC)患者的回顾性分析。
患者接受了个体化治疗计划和体素剂量测量。研究从99mTc-MAA和90Y SPECT/CT图像计算的物理和生物学有效剂量(BED)图中提取了289个剂量-体积约束(DVCs),并将其与16个临床生物标志物作为特征用于单变量和多变量分析。
研究结果显示,中位OS为11个月,PFS为7个月。单变量分析显示,腹水的存在、SIRT的目的(节段切除、叶切除、姑息治疗)、天门冬氨酸氨基转移酶(AST)水平和MAADose-V205(%)-TL是OS的预测因子。而90Y衍生参数与PFS相关,但与OS无关。
多变量分析中,使用机器学习(ML)的最高C指数为0.94 ± 0.13,是通过变量狩猎-变量重要性(VH.VIMP)特征选择和Cox比例风险模型预测OS得到的,使用的是临床特征。然而,VH.VIMP特征选择方法与广义线性模型网络(GLMN)模型的结合,在预测OS方面,使用治疗策略特征,无论是在C指数(0.93 ± 0.14)还是Kaplan-Meier(KM)曲线的分层(对数秩p值为0.023)方面,都优于其他模型。
这项初步研究证实了基线临床生物标志物和剂量测量参数在预测治疗效果方面的作用,并为建立剂量-效应关系铺平了道路。
知识点补充:选择性内部放射治疗(SIRT)
选择性内部放射治疗(Selective Internal Radiation Therapy, SIRT),也称为放射性栓塞治疗,是一种微创的肿瘤治疗方法,主要用于治疗肝脏中的恶性肿瘤,如肝细胞癌(HCC)和肝转移瘤。
SIRT通过将含有放射性同位素的微球(例如90Y,即放射性钇)通过导管直接注入到供应肿瘤的血管中,使微球在肿瘤内部形成栓塞,从而将高剂量的放射线局限在肿瘤组织内,达到杀死肿瘤细胞的目的,同时尽量减少对周围正常肝组织的损伤。
SIRT的主要特点包括:
- 靶向性:直接作用于肿瘤血管,减少对正常肝组织的损害。
- 微创性:通过血管内操作,无需开刀,患者恢复较快。
- 剂量控制:可以根据肿瘤的大小和位置调整放射性微球的剂量和分布。
- 个体化治疗:结合患者的具体情况和肿瘤的特征,制定个性化的治疗方案。
SIRT治疗可以作为其他治疗方法(如化疗、外科手术或射频消融)的替代或补充,尤其适用于那些不适合手术或其他局部治疗手段的患者。
此外,SIRT治疗的效果可以通过影像学检查和生物标志物进行评估,并可能结合机器学习等先进技术来优化治疗方案和提高治疗效果。
重点关注
Fig. 2 展示了一位67岁被诊断为肝细胞癌(HCC)的男性患者接受90Y放射性微球作为姑息治疗的情况。
患者的整体存活期(OS)和无进展存活期(PFS)均记录为6个月。这个图由两个部分组成,Panel (A) 和 Panel (B),每个部分都包含了重要的治疗规划和验证信息。
-
Panel (A) 展示了99mTc-MAA治疗计划剂量图的轴向切片,以及相应的提取剂量-体积直方图(DVH)和生物等效剂量-体积直方图(BVH,从BED计算得出)。在这个图像中:
- 红色可能表示肿瘤区域,即放射性微球主要集中的区域。
- 绿色可能表示正常肝脏组织,即需要尽量保护免受放射线损伤的区域。
- DVH用于显示不同剂量下相应体积的累积分布情况,帮助评估剂量分布的均匀性。
- BVH是从生物学有效剂量(BED)计算得出,考虑了放射线对细胞的生物效应。
-
Panel (B) 显示了90Y治疗验证相同的信息。这意味着在实际治疗后,通过成像技术确认了90Y微球在体内的分布情况,并与治疗计划进行了对比:
- 这可能包括了90Y的实际分布图,显示了放射性剂量在肿瘤和正常肝脏中的分布。
- 同样地,肿瘤和正常肝脏可能分别用红色和绿色表示。
通过这种对比,医疗团队可以评估实际治疗与计划之间的一致性,确保放射性剂量尽可能地集中在肿瘤上,同时最小化对正常肝组织的损害。这种验证对于个性化治疗计划的优化至关重要,有助于提高治疗效果和患者的生存期。
Fig. 2 通过视觉化的方式提供了治疗计划与实际执行之间的比较,对于理解SIRT治疗的复杂性和精确性非常有帮助。通过这种详细的剂量分布分析,医生可以更好地理解治疗的效果,并为未来的治疗计划提供改进的依据。