小罗碎碎念
国自然重大专项,项目直接费用为250万元,执行年限从2020年1月至2022年12月。
今天分享的这个项目,其负责人在去年成功获选院士,并且该项目培养出了一个优青。这份报告内容也非常翔实,配图很丰富,总页数达到了66页。
项目的主要研究内容包括:
- 利用单细胞组学技术建立中国高发肿瘤的免疫学基线数据。
- 系统比较不同肿瘤的免疫特征,发现新的免疫细胞亚群和功能属性。
- 探讨这些细胞在肿瘤发生发展中的作用机制,以及对免疫治疗药物的应答规律。
- 深入分析T细胞在肿瘤组织内的谱系、状态、迁移等规律。
- 整合肿瘤DNA体细胞变异数据和正常人体组织单细胞组学数据,发现调控肿瘤免疫的规律和关键因子。
项目取得了一系列成果,包括发表多篇SCI论文,申请专利,以及培养博士后和博士生。研究成果在肿瘤治疗领域具有应用前景,预计在5-10年内推广使用。
一、项目摘要
为了深化对肿瘤微环境异质性的理解,本项目团队首次系统地刻画了肿瘤浸润性T细胞和髓系细胞的单细胞水平异质性和动态性,并比较了21个癌种之间的异同,揭示了CD8+ T细胞耗竭的两种常见主要途径,鉴定了T细胞耗竭的前体细胞和关键调控因子,并发现了T细胞耗竭途径存在癌种偏好性;发现了巨噬细胞在不同瘤肿内呈现高度异质性,这一结果表明靶向肿瘤相关巨噬细胞的免疫治疗方案尤其需要考虑其在不同癌种内的转录组特异性,为未来个体化免疫治疗提供了理论基础。
同时,本项目团队还对原发肿瘤细胞远端器官转移过程及肿瘤免疫治疗耐药过程的肿瘤微环境异质性进行了深入研究,通过原发肿瘤细胞转移到远端器官的过程来拆解影响肿瘤微环境的复杂因素,发现在肿瘤微环境中不同免疫细胞的表型可能受到肿瘤细胞本身及其所驻留的器官微环境的协同影响,根据免疫细胞受到的主要影响因素对免疫细胞进行分类。
发现肿瘤微环境、癌症类型和局部器官微环境之间复杂的相互作用,发现CXCL13+ T细胞可以预测免疫治疗效果,在不同癌症类型中以及治疗策略不同时,治疗引起增加的CXCL13+ T细胞的亚类是不同的,该发现为解释免疫治疗的作用机制提供了一个统一的理论框架。
为了准确分析单细胞数据,对细胞进行分群,开发新的生信算法ROxxx(Ratio of xxx)进行定量鉴定细胞类群的纯度,对于提升单细胞类群的精确性、进一步利用单细胞测序技术产生新的生物学发现具有重要的实用应用价值。
二、项目研究进展
项目执行概况
本项目旨在通过单细胞测序技术,深入解析肿瘤组织中的免疫细胞及其关键调控因子,构建肿瘤细胞与肿瘤微环境相互作用的理论模型,以增进团队对肿瘤微环境异质性的理解。
项目团队已成功获取21种癌症类型的单细胞转录组数据,包括骨髓瘤、淋巴瘤等,通过单细胞组学整合生物信息分析,系统揭示了肿瘤浸润性T细胞和髓系细胞的异质性与动态变化。研究发现了CD8+ T细胞耗竭的两种主要途径,并鉴定了T细胞耗竭的前体细胞和关键调控因子,这对于理解肿瘤微环境中免疫细胞的动态变化至关重要。
此外,项目还深入研究了原发肿瘤细胞远端器官转移及肿瘤免疫治疗耐药过程中的肿瘤微环境异质性。通过分析结直肠肿瘤细胞转移到肝组织的过程,揭示了肿瘤微环境中不同免疫细胞表型受肿瘤细胞和器官微环境的协同影响,将免疫细胞分为受肿瘤细胞影响的“M型”和受组织微环境影响的“N型”。通过PhenoAligner方法,识别了与肿瘤进展或转移相关的关键性免疫细胞亚群,为转移癌的临床检测与治疗提供了新思路。
在肿瘤免疫治疗耐药机制研究中,项目团队收集并分析了9个免疫治疗单细胞数据集,涵盖了5种癌症类型,揭示了肿瘤微环境、癌症类型和局部器官微环境之间的复杂相互作用,并发现CXCL13+T细胞可以预测免疫治疗疗效。
项目目标完成情况
项目成果超出预期,主要成果包括:发表9篇SCI论文,其中8篇影响因子大于20;申请1项专利;培养2名博士后和3名博士生。
这些成果不仅提升了单细胞类群的精确性,而且通过开发新的生信算法ROxxx(Ratio of xxx),为单细胞数据的准确分析和细胞分群提供了重要的工具,具有重要的实际应用价值。
三、主要研究内容
本课题采用单细胞组学技术建立了中国高发肿瘤的免疫学基线数据。
通过系统比较不同肿瘤的免疫特征,团队发现了新的免疫细胞亚群和它们的新功能属性,并探讨了这些新发现在肿瘤发生发展中的作用机制。此外,团队探索了肿瘤内免疫组分对免疫治疗药物的应答规律,特别是在T细胞——多种抗肿瘤免疫治疗的核心对象——的研究上取得了显著进展。结合单细胞表达谱和TCR序列信息,团队深入分析了T细胞在肿瘤组织内的谱系、状态、迁移等规律。
髓系细胞作为肿瘤浸润免疫细胞的重要组成部分,在调节肿瘤炎症反应以及血管生成等方面发挥着重要作用。团队整合了大规模髓系细胞单细胞表达谱数据,构建了多癌种内的肿瘤浸润髓系细胞特征图谱,并系统性地比较了各髓系细胞类群在不同癌种间组成、发育及功能上的异同。
通过本研究,团队系统性对比了T细胞和髓系细胞在不同癌种内的特征,并鉴定了这两类细胞调控肿瘤免疫的规律及关键调控因子,为不同癌种的肿瘤免疫治疗开辟了新的方向。
同时,团队对原发肿瘤细胞远端器官转移过程及肿瘤免疫治疗耐药过程的肿瘤微环境异质性进行了深入研究。
团队发现,在肿瘤微环境中不同免疫细胞的表型可能受到肿瘤细胞本身和其所驻留的器官微环境的协同影响。根据免疫细胞受到的主要影响因素对免疫细胞进行分型,团队发现肿瘤微环境、癌症类型和局部器官微环境之间存在复杂的相互作用。
在肿瘤免疫治疗耐药机制方面,团队发现CXCL13+T细胞可以预测免疫治疗疗效,在不同癌症类型中以及治疗策略不同时,治疗引起增加的CXCL13+T细胞的亚类是不同的,这为解释免疫治疗的作用机制提供了一个统一的理论框架。
此外,为了对细胞进行分群,团队开发了新的生信算法ROxxx用于定量鉴定细胞类群的纯度。ROxxx算法使用微分熵来描述单细胞数据的基因表达分布,并建立表达熵模型以刻画微分熵与基因表达量均值之间的联系,大大提高了单细胞组学分析的准确性。这一工具的开发,不仅提升了单细胞类群的精确性,而且对于利用单细胞测序技术产生新的生物学发现具有重要的实际应用价值。
四、主要研究进展
这一部分内容较多,只展示框架,具体细节不做介绍。
一、泛癌症肿瘤浸润T细胞图谱
1.泛癌T细胞类群的鉴定
2.CD8+ 耗竭T 细胞异质性的鉴定
3.耗竭性T细胞的发育追踪
4.影响肿瘤浸润T细胞组成的因素
5.基于T细胞类群定义肿瘤的免疫类型
二、泛癌症肿瘤浸润髓系细胞图谱
-
建立15个癌种内肿瘤浸润髓系细胞图谱
-
肥大细胞在不同癌种内呈现不同功能状态
-
LAMP3+DC在不同癌种内广泛存在且存在不同的发育起源
-
cDC2亚群的刻画
-
巨噬细胞在不同癌种呈现高度异质性
-
多种因素影响肿瘤浸润髓系细胞组成
三、结直肠癌肝转移模型解析肿瘤微环境中免疫细胞表型
-
建立结直肠癌肝转移免疫细胞图谱
-
原发肝癌与原发结直肠癌的免疫微环境比较
-
肿瘤细胞和器官特征对免疫微环境的影响
-
3.1 T细胞表型
-
3.2 巨噬细胞表型
-
3.3 树突状细胞表型
-
四、 单细胞解析免疫治疗响应机制
该研究的科学发现具有以下几个重要方面:
-
肿瘤特异T细胞分析新思路:
- 该研究通过单细胞组学技术,为分析肿瘤中的肿瘤特异T细胞提供了新的思路。
-
预测ICB疗效的生物标志物:
- 研究发现CXCL13+T细胞可以作为预测免疫检查点阻断(ICB)疗效的准确生物标志物。
-
TCR-T细胞疗法新策略:
- 研究提出了一种新的策略,即通过CXCL13表达水平来鉴定肿瘤中不同分化阶段的肿瘤特异T细胞克隆。这一策略对于设计以T细胞受体(TCR)-T细胞疗法为代表的细胞疗法具有指导意义,有助于提高治疗效果和减少不良反应。
-
提高ICB疗效的新见解:
- 研究还提供了进一步提高ICB疗效的新见解,即通过将ICB与其他疗法联合使用,可以进一步缓解肿瘤微环境中的免疫抑制强度。这种方法有助于维持前体肿瘤特异性CXCL13+ CD8+T细胞的状态,并阻断其向终末耗竭状态的分化,从而可能继续提高治疗效果。
这些科学发现不仅加深了团队对肿瘤免疫微环境的理解,而且为肿瘤免疫治疗提供了新的策略和方法。通过这些发现,研究人员和临床医生可以更有效地设计和实施免疫治疗方案,以提高治疗效果和患者的生存质量。
五、 单细胞类群纯度评估新方法ROxxx
本研究提出了一种创新的生物信息学指标——ROxxx(Ratio of xxx),旨在定量测定特定细胞类群的纯度。在单细胞转录组测序领域,发现和鉴定各种细胞类型是至关重要的,但无监督聚类得到的细胞类型结果往往受到不同聚类方法和参数的影响。因此,准确测定细胞类群的纯度对于单细胞测序技术的广泛应用具有极其重要的价值。
ROxxx的核心在于使用微分熵来描述单细胞数据中的基因表达分布,并构建了一个表达熵模型(S-E model),该模型能够刻画微分熵与基因表达量均值之间的关系。在无监督聚类和交叉验证等评估中,表达熵模型相较于之前发表的无监督基因选择方法,显示出显著的优越性,能够准确有效地鉴定出高变异基因。基于S-E模型设计的ROxxx统计量能够快速准确地评估给定细胞类群的纯度。在实际应用中,ROxxx显示出了稳健和准确的能力,能够定量细胞类型的纯度并指导聚类,而且不受测序深度等因素的影响。
本课题还利用ROxxx对一些已发表文章中鉴定的细胞类型进行了纯度评估,发现一些异质性较高的细胞类群可以进一步细分为更精细的亚群,从而揭示更精确的生物学信号。
随着单细胞测序技术的快速发展,提升不断发现的细胞类型的可信度是一个严峻的挑战。ROxxx作为一种新的工具,有潜力成为指导聚类、判断细胞类群质量的潜在标准,对于推动单细胞生物学研究和临床应用具有重要意义。
知识星球
如需获取推文中提及的各种资料,欢迎加入我的知识星球!