秃鹰搜索(BES)算法及其 Python 和 MATLAB 代码

秃鹰搜索算法(Bald Eagle Search,BES)是一种基于自然界中秃鹰觅食行为启发的优化算法,旨在解决优化问题。该算法模仿了秃鹰在寻找猎物时的策略,结合了随机搜索和逐步优化的特点,以有效地搜索和收敛到最优解为目标。

**背景:**
秃鹰是一种优秀的猎食者,在广阔的天空中具有卓越的搜索能力和敏锐的觅食技巧。研究人员观察到秃鹰在搜索食物时以瞄准目标为中心,并随着时间的推移逐渐调整飞行方向,直至捕获猎物。秃鹰的这种行为启发了BES算法的开发。

**原理:**
BES算法基于随机搜索和渐进优化的思想。搜索代理(代表秃鹰)初始化,并在搜索空间中随机移动,以期找到更好的解。随着迭代次数的增加,搜索代理逐步向全局最优解收敛,类似于秃鹰逐渐调整飞行路径,以最小化与目标之间的距离。

**实现步骤:**
1. 初始化搜索代理:在搜索空间内随机生成多个搜索代理。
2. 计算适应度:根据目标函数计算每个搜索代理的适应度。
3. 更新最优解:记录全局最优解,并根据适应度更新最佳搜索代理。
4. 更新搜索代理位置:根据全局最佳解逐步调整搜索代理的位置。
5. 迭代优化:重复步骤2至步骤4直至达到最大迭代次数或收敛到最优解。

**优缺点:**
优点:
- BES算法结合了随机性和局部优化,有助于克服局部最优解问题。
- 算法简单易于实现,并能够在多种优化问题中有效应用。
- BES算法具有较好的收敛性和全局搜索能力。

缺点:
- BES算法需要适当的调参和设置迭代次数,调整参数并非易事。
- 对于复杂的高维优化问题,BES算法的收敛速度可能会受到影响。
- 算法的性能和稳定性受到初始搜索代理位置的影响。

**相关应用:**
BES算法可以广泛应用于各种优化问题,如工程设计优化、机器学习模型调优、神经网络训练等领域。具体应用包括但不限于:
- 参数调优:优化支持向量机、神经网络等模型的超参数。
- 物流优化:优化货物配送路径、最小化成本等问题。
- 电力系统优化:优化电网配置、风力发电机组位置等。
- 生产排程优化:优化生产线排程、减少生产成本等方面。

总之,BES算法作为一种新兴的优化算法,具有广泛的应用前景。通过模仿秃鹰的觅食策略,BES算法为解决复杂的优化问题提供了一种新的视角和方法,有望在实际工程和科学领域产生积极影响。
 

以下是使用秃鹰搜索(BES)算法优化SVM超参数的Python代码示例:

import numpy as np
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score

# Objective function to optimize SVM hyperparameters
def objective_function(params):
    C, gamma = params
    model = SVC(C=C, gamma=gamma)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_val)
    accuracy = accuracy_score(y_val, y_pred)
    return -accuracy  # Minimize negative accuracy

# Initialize search agents randomly within bounds
def initialize_search_agents(num_agents, bounds):
    search_agents = []
    for _ in range(num_agents):
        agent = [np.random.uniform(low, high) for low, high in bounds]
        search_agents.append(agent)
    return search_agents

# Update the position of search agents using Bald Eagle Search (BES) algorithm
def update_search_agents(search_agents, best_agent, num_iterations, bounds):
    updated_agents = search_agents.copy()
    
    for agent in updated_agents:
        step_size = np.random.uniform(0, 1, len(agent))
        for i in range(len(agent)):
            agent[i] = agent[i] + step_size[i] * (best_agent[i] - agent[i]) * num_iterations / bounds[i]
    
    return updated_agents

# Perform Bald Eagle Search (BES) algorithm to optimize SVM hyperparameters
num_agents = 10
max_iter = 100
bounds = [(0.1, 100), (0.0001, 1)]  # Bounds for C and gamma
search_agents = initialize_search_agents(num_agents, bounds)

for iter in range(max_iter):
    for idx, agent in enumerate(search_agents):
        fitness = objective_function(agent)
        if iter == 0 or fitness < best_fitness:
            best_agent = agent
            best_fitness = fitness

    search_agents = update_search_agents(search_agents, best_agent, iter+1, [bound[1] for bound in bounds])

# Get the best hyperparameters after optimization
best_hyperparams = best_agent
best_C, best_gamma = best_hyperparams

# Print the optimized hyperparameters
print("Optimized SVM hyperparameters:")
print("C =", best_C)
print("gamma =", best_gamma)

# Train the SVM model with the optimized hyperparameters
best_model = SVC(C=best_C, gamma=best_gamma)
best_model.fit(X_train, y_train)
y_pred = best_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy with optimized hyperparameters:", accuracy)

MATLAB 中目前没有现成的秃鹰搜索(BES)算法优化库,但是您可以自己实现该算法。以下是伪代码示例:

% Load the Iris dataset
load iris.mat
X = meas;
y = species;

% Split the data into training and testing sets
cv = cvpartition(y, 'HoldOut', 0.2);
X_train = X(cv.training,:);
y_train = y(cv.training);
X_test = X(cv.test,:);
y_test = y(cv.test);

% Define the objective function to optimize SVM hyperparameters
objective_function = @(params)svm_objective(params, X_train, y_train, X_test, y_test);

% Initialize search agents randomly within bounds
num_agents = 10;
bounds = [0.1, 100; 0.0001, 1]; % Bounds for C and gamma
search_agents = rand(num_agents, 2) .* repmat(bounds(:,2)' - bounds(:,1)', num_agents, 1) + repmat(bounds(:,1)', num_agents, 1); 

% Set the maximum number of iterations
max_iter = 100;

best_fitness = inf;
best_agent = [];

for iter = 1:max_iter
    for idx = 1:num_agents
        fitness = objective_function(search_agents(idx,:));
        if fitness < best_fitness
            best_fitness = fitness;
            best_agent = search_agents(idx,:);
        end
    end

    for idx = 1:num_agents
        step_size = rand(size(search_agents(idx,:)));
        search_agents(idx,:) = search_agents(idx,:) + step_size .* (best_agent - search_agents(idx,:)) * iter ./ bounds(:,2)';
    end
end

% Get the best hyperparameters after optimization
best_hyperparams = best_agent;
best_C = best_hyperparams(1);
best_gamma = best_hyperparams(2);

% Print the optimized hyperparameters
fprintf('Optimized SVM hyperparameters:\nC = %f\ngamma = %f\n', best_C, best_gamma);

% Train the SVM model with the optimized hyperparameters
best_model = fitcsvm(X_train, y_train, 'BoxConstraint', best_C, 'KernelFunction', 'rbf', 'KernelScale', 1/sqrt(2*best_gamma));
y_pred = predict(best_model, X_test);
accuracy = sum(y_pred == y_test) / numel(y_test);
fprintf('Accuracy with optimized hyperparameters: %f\n', accuracy);

这两个示例展示了如何使用秃鹰搜索(BES)算法在Python和MATLAB中优化SVM的超参数。MATLAB示例是伪代码,可以根据具体需求和实现能力进行适当的修改。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值