智能优化算法:秃鹰搜索算法
摘要:秃鹰搜索 (bald eagle search,BES) 优化是马来西亚学者Alsattar 于2020年提出的一种新型元启发式算法, 该算法具有较强的全局搜索能力, 能够有效地解决各类复杂数值优化问题的优点。
1.算法原理
秃鹰遍布于北美洲地区, 飞行中视力敏锐, 观察能力优秀. 以捕食鲑鱼为例, 秃鹰首先会基于个体和种群到鲑鱼的浓度来选择搜索空间, 朝一个特定区域飞行; 其次在选定搜索空间内搜索水面, 直到发现合适的猎物; 最后秃鹰会逐渐改变飞行高度, 快速向下俯冲, 从水中成功捕获鲑鱼等猎物.
BES 算法以秃鹰捕食猎物的行为进行模拟, 将其分为选择搜索空间、搜索空间猎物和俯冲捕获猎物三个阶段, 数学模型如下所示:
1.1 选择搜索空间
秃鹰随机选择搜索区域, 通过判断猎物数目来确定最佳搜寻位置, 便于搜索猎物,该阶段秃鹰位置
P
i
,
n
e
w
P_{i,new}
Pi,new更新由随机搜索的先验信息乘以
α
\alpha
α来确定. 该行为数学模型描述为:
P
i
,
n
e
w
=
P
b
e
s
t
+
α
∗
r
(
P
m
e
a
n
−
P
i
)
(1)
P_{i,new}=P_{best}+\alpha*r(P_{mean}-P_i)\tag{1}
Pi,new=Pbest+α∗r(Pmean−Pi)(1)
式中:
α
α
α 表示控制位置变化参数, 变化范围为 (1.5,2);
r
r
r为 (0,1) 间随机数;
P
b
e
s
t
P_{best}
Pbest 为当前秃鹰搜索确定的最佳搜索位置;
P
m
e
a
n
P_{mean}
Pmean 为先前搜索结束后秃鹰的平均分布位置;
P
i
P_i
Pi 为第
i
i
i 只秃鹰位置.
1.2 搜索空间猎物 (探索)
秃鹰在选定搜索空间内以螺旋形状飞行搜索猎物, 加速搜索进程, 寻找最佳俯冲捕获位置. 螺旋飞行数学模型采用极坐标方程进行位置更新, 如下所示:
θ
(
i
)
=
a
∗
π
∗
r
a
n
d
(2)
\theta(i) = a*\pi*rand \tag{2}
θ(i)=a∗π∗rand(2)
r ( i ) = θ ( i ) + R ∗ r a n d (3) r(i)=\theta(i) + R*rand\tag{3} r(i)=θ(i)+R∗rand(3)
x r ( i ) = r ( i ) ∗ s i n ( θ ( i ) ) (4) xr(i)=r(i)*sin(\theta(i))\tag{4} xr(i)=r(i)∗sin(θ(i))(4)
y r ( i ) = r ( i ) ∗ c o s ( θ ( i ) ) (5) yr(i)=r(i)*cos(\theta(i))\tag{5} yr(i)=r(i)∗cos(θ(i))(5)
x ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (6) x(i)=xr(i)/max(|xr|) \tag{6} x(i)=xr(i)/max(∣xr∣)(6)
y ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (7) y(i)=yr(i)/max(|yr|)\tag{7} y(i)=yr(i)/max(∣yr∣)(7)
其中:
θ
(
i
)
θ(i)
θ(i) 与
r
(
i
)
r(i)
r(i) 分别为螺旋方程的极角与极径;
a
a
a 与
R
R
R是控制螺旋轨迹的参数, 变化范围分别为 (0,5)、(0.5,2);
r
a
n
d
rand
rand 为 (0,1) 内随机数,
x
(
i
)
x(i)
x(i) 与
y
(
i
)
y(i)
y(i) 表示极坐标中秃鹰位置, 取值均为 (-1,1). 秃鹰位置更新如下:
P
i
,
n
e
w
=
P
i
+
x
(
i
)
∗
(
P
i
−
P
m
e
a
n
)
+
y
(
i
)
∗
(
P
i
−
P
i
+
1
)
(8)
P_{i,new}=P_i+x(i)*(P_i-P_{mean})+y(i)*(P_i-P_{i+1})\tag{8}
Pi,new=Pi+x(i)∗(Pi−Pmean)+y(i)∗(Pi−Pi+1)(8)
1.3 俯冲捕获猎物 (利用)
秃鹰从搜索空间的最佳位置快速俯冲飞向目标猎物, 种群其他个体也同时向最佳位置移动并攻击猎物, 运动状态仍用极坐标方程描述, 如下:
θ ( i ) = a ∗ π ∗ r a n d (9) \theta(i) = a*\pi*rand \tag{9} θ(i)=a∗π∗rand(9)
r ( i ) = θ ( i ) (10) r(i)=\theta(i)\tag{10} r(i)=θ(i)(10)
x r ( i ) = r ( i ) ∗ s i n h ( θ ( i ) ) (11) xr(i)=r(i)*sinh(\theta(i))\tag{11} xr(i)=r(i)∗sinh(θ(i))(11)
y r ( i ) = r ( i ) ∗ c o s h ( θ ( i ) ) (12) yr(i)=r(i)*cosh(\theta(i))\tag{12} yr(i)=r(i)∗cosh(θ(i))(12)
x 1 ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (13) x1(i)=xr(i)/max(|xr|) \tag{13} x1(i)=xr(i)/max(∣xr∣)(13)
y 1 ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (14) y1(i)=yr(i)/max(|yr|)\tag{14} y1(i)=yr(i)/max(∣yr∣)(14)
俯冲中秃鹰位置更新公式为:
{
δ
x
=
x
1
(
i
)
∗
(
P
i
−
c
1
∗
P
m
e
a
n
)
δ
y
=
y
1
(
i
)
∗
(
P
i
−
c
2
∗
P
b
e
s
t
)
(15)
\begin{cases} \delta_x = x1(i)*(P_i-c_1*P_{mean})\\ \delta_y = y1(i)*(P_i-c_2*P_{best}) \end{cases}\tag{15}
{δx=x1(i)∗(Pi−c1∗Pmean)δy=y1(i)∗(Pi−c2∗Pbest)(15)
P i , n e w = r a n d ∗ P b e s t + δ x + δ y (16) P_{i,new}=rand*P_{best}+\delta_x+\delta_y\tag{16} Pi,new=rand∗Pbest+δx+δy(16)
式中: c 1 c_1 c1 与 c 2 c_2 c2 表示秃鹰向最佳与中心位置的运动强度, 取值均为 (1,2).
算法流程:
step1:初始化秃鹰算法参数,初始化种群
step2:计算适应度值
step3:秃鹰选择搜索空间,利用式(1)更新位置
step4:秃鹰在搜索空间搜索猎物,利用式(6)更新位置
step5:秃鹰俯冲,利用式(16),更新位置
step6: 判断是否达到结束条件,如果达到则输出最优结果,否则重复步骤step2-step6.
2.实验结果
3.参考文献
[1]Alsattar H A, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review: An International Science and Engineering Journal, 2020,53(8): 2237-2264.
[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-02-09].https://doi.org/10.13195/j.kzyjc.2020.1025.
4.Matlab代码
改进算法matlab代码
名称 | 说明或者参考文献 |
---|---|
基于levy飞行和模拟退火改进的秃鹰算法(IBES) | [1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-11-10].https://doi.org/10.13195/j.kzyjc.2020.1025. |
个人资料介绍