智能优化算法:秃鹰搜索算法 -附代码

智能优化算法:秃鹰搜索算法


摘要:秃鹰搜索 (bald eagle search,BES) 优化是马来西亚学者Alsattar 于2020年提出的一种新型元启发式算法, 该算法具有较强的全局搜索能力, 能够有效地解决各类复杂数值优化问题的优点。

1.算法原理

秃鹰遍布于北美洲地区, 飞行中视力敏锐, 观察能力优秀. 以捕食鲑鱼为例, 秃鹰首先会基于个体和种群到鲑鱼的浓度来选择搜索空间, 朝一个特定区域飞行; 其次在选定搜索空间内搜索水面, 直到发现合适的猎物; 最后秃鹰会逐渐改变飞行高度, 快速向下俯冲, 从水中成功捕获鲑鱼等猎物.

BES 算法以秃鹰捕食猎物的行为进行模拟, 将其分为选择搜索空间、搜索空间猎物和俯冲捕获猎物三个阶段, 数学模型如下所示:

1.1 选择搜索空间

秃鹰随机选择搜索区域, 通过判断猎物数目来确定最佳搜寻位置, 便于搜索猎物,该阶段秃鹰位置 P i , n e w P_{i,new} Pi,new更新由随机搜索的先验信息乘以 α \alpha α来确定. 该行为数学模型描述为:
P i , n e w = P b e s t + α ∗ r ( P m e a n − P i ) (1) P_{i,new}=P_{best}+\alpha*r(P_{mean}-P_i)\tag{1} Pi,new=Pbest+αr(PmeanPi)(1)
式中: α α α 表示控制位置变化参数, 变化范围为 (1.5,2); r r r为 (0,1) 间随机数; P b e s t P_{best} Pbest 为当前秃鹰搜索确定的最佳搜索位置; P m e a n P_{mean} Pmean 为先前搜索结束后秃鹰的平均分布位置; P i P_i Pi 为第 i i i 只秃鹰位置.

1.2 搜索空间猎物 (探索)

秃鹰在选定搜索空间内以螺旋形状飞行搜索猎物, 加速搜索进程, 寻找最佳俯冲捕获位置. 螺旋飞行数学模型采用极坐标方程进行位置更新, 如下所示:
θ ( i ) = a ∗ π ∗ r a n d (2) \theta(i) = a*\pi*rand \tag{2} θ(i)=aπrand(2)

r ( i ) = θ ( i ) + R ∗ r a n d (3) r(i)=\theta(i) + R*rand\tag{3} r(i)=θ(i)+Rrand(3)

x r ( i ) = r ( i ) ∗ s i n ( θ ( i ) ) (4) xr(i)=r(i)*sin(\theta(i))\tag{4} xr(i)=r(i)sin(θ(i))(4)

y r ( i ) = r ( i ) ∗ c o s ( θ ( i ) ) (5) yr(i)=r(i)*cos(\theta(i))\tag{5} yr(i)=r(i)cos(θ(i))(5)

x ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (6) x(i)=xr(i)/max(|xr|) \tag{6} x(i)=xr(i)/max(xr)(6)

y ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (7) y(i)=yr(i)/max(|yr|)\tag{7} y(i)=yr(i)/max(yr)(7)

其中: θ ( i ) θ(i) θ(i) r ( i ) r(i) r(i) 分别为螺旋方程的极角与极径; a a a R R R是控制螺旋轨迹的参数, 变化范围分别为 (0,5)、(0.5,2); r a n d rand rand 为 (0,1) 内随机数, x ( i ) x(i) x(i) y ( i ) y(i) y(i) 表示极坐标中秃鹰位置, 取值均为 (-1,1). 秃鹰位置更新如下:
P i , n e w = P i + x ( i ) ∗ ( P i − P m e a n ) + y ( i ) ∗ ( P i − P i + 1 ) (8) P_{i,new}=P_i+x(i)*(P_i-P_{mean})+y(i)*(P_i-P_{i+1})\tag{8} Pi,new=Pi+x(i)(PiPmean)+y(i)(PiPi+1)(8)

1.3 俯冲捕获猎物 (利用)

秃鹰从搜索空间的最佳位置快速俯冲飞向目标猎物, 种群其他个体也同时向最佳位置移动并攻击猎物, 运动状态仍用极坐标方程描述, 如下:

θ ( i ) = a ∗ π ∗ r a n d (9) \theta(i) = a*\pi*rand \tag{9} θ(i)=aπrand(9)

r ( i ) = θ ( i ) (10) r(i)=\theta(i)\tag{10} r(i)=θ(i)(10)

x r ( i ) = r ( i ) ∗ s i n h ( θ ( i ) ) (11) xr(i)=r(i)*sinh(\theta(i))\tag{11} xr(i)=r(i)sinh(θ(i))(11)

y r ( i ) = r ( i ) ∗ c o s h ( θ ( i ) ) (12) yr(i)=r(i)*cosh(\theta(i))\tag{12} yr(i)=r(i)cosh(θ(i))(12)

x 1 ( i ) = x r ( i ) / m a x ( ∣ x r ∣ ) (13) x1(i)=xr(i)/max(|xr|) \tag{13} x1(i)=xr(i)/max(xr)(13)

y 1 ( i ) = y r ( i ) / m a x ( ∣ y r ∣ ) (14) y1(i)=yr(i)/max(|yr|)\tag{14} y1(i)=yr(i)/max(yr)(14)

俯冲中秃鹰位置更新公式为:
{ δ x = x 1 ( i ) ∗ ( P i − c 1 ∗ P m e a n ) δ y = y 1 ( i ) ∗ ( P i − c 2 ∗ P b e s t ) (15) \begin{cases} \delta_x = x1(i)*(P_i-c_1*P_{mean})\\ \delta_y = y1(i)*(P_i-c_2*P_{best}) \end{cases}\tag{15} {δx=x1(i)(Pic1Pmean)δy=y1(i)(Pic2Pbest)(15)

P i , n e w = r a n d ∗ P b e s t + δ x + δ y (16) P_{i,new}=rand*P_{best}+\delta_x+\delta_y\tag{16} Pi,new=randPbest+δx+δy(16)

式中: c 1 c_1 c1 c 2 c_2 c2 表示秃鹰向最佳与中心位置的运动强度, 取值均为 (1,2).

算法流程:

step1:初始化秃鹰算法参数,初始化种群

step2:计算适应度值

step3:秃鹰选择搜索空间,利用式(1)更新位置

step4:秃鹰在搜索空间搜索猎物,利用式(6)更新位置

step5:秃鹰俯冲,利用式(16),更新位置

step6: 判断是否达到结束条件,如果达到则输出最优结果,否则重复步骤step2-step6.

2.实验结果

在这里插入图片描述

3.参考文献

[1]Alsattar H A, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review: An International Science and Engineering Journal, 2020,53(8): 2237-2264.

[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-02-09].https://doi.org/10.13195/j.kzyjc.2020.1025.

4.Matlab代码

改进算法matlab代码

名称说明或者参考文献
基于levy飞行和模拟退火改进的秃鹰算法(IBES)[1]贾鹤鸣,姜子超,李瑶.基于改进秃鹰搜索算法的同步优化特征选择[J/OL].控制与决策:1-9[2021-11-10].https://doi.org/10.13195/j.kzyjc.2020.1025.

个人资料介绍

禁忌搜索算法在某些方面存在一些不足,需要进行改进。首先,禁忌搜索对初始解有较强的依赖性,较好的初始解可以帮助算法在解空间中搜索到好的解,而较差的初始解则会减慢算法的收敛速度。因此,可以将禁忌搜索算法与其他优化算法如遗传算法、模拟退火算法等结合,先产生较好的初始解,再使用禁忌搜索算法进行搜索优化。这样可以提高算法的性能和效果。 其次,禁忌搜索算法的迭代搜索过程是串行的,只是单一状态的移动,而非并行搜索。为了进一步改善禁忌搜索的性能,可以改进禁忌搜索算法本身的操作和参数选择,引入并行策略,实现并行禁忌搜索算法。另外,还可以与遗传算法、神经网络算法以及基于问题信息的局部搜索相结合,从而进一步提高算法的搜索效率和准确性。 此外,在集中性与多样性搜索并重的情况下,禁忌搜索算法可能存在多样性不足的问题。集中性搜索策略用于加强对当前搜索优良解的邻域进行更充分的搜索,以找到全局最优解。而多样性搜索策略则用于拓宽搜索区域,尤其是未知区域,当搜索陷入局部最优时,多样性搜索可以改变搜索方向,跳出局部最优,从而实现全局最优。增加多样性策略的一种简单处理方式是重新随机初始化算法,或者根据频率信息对一些已知对象进行惩罚。 综上所述,对禁忌搜索算法的改进可以从改进初始解的产生、引入并行策略、与其他优化算法结合以及增加多样性搜索等方面进行。这些改进措施可以提高禁忌搜索算法的性能和效果,使其在实际应用中更加有效地解决问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Bald eagle search Optimization algorithm秃鹰搜索优化算法 Matlab](https://download.csdn.net/download/weixin_39168167/88262751)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* [【TS TSP】基于matlab改进的禁忌搜索算法求解旅行商问题【含Matlab源码 241期】](https://blog.csdn.net/TIQCmatlab/article/details/113732930)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值